On Certain Properties of Lie Algebras

Atsuo Jôichi

(Received February 27, 1967)

Introduction. I. M. Singer [1] has introduced the following condition for a Lie algebra L: (A) Any pair of elements x, y of L such that [x, [x, y]]=0satisfies [x, y]=0. M. Sugiura [2] called a Lie algebra satisfying this condition to be an (A)-algebra and proved, among other results, that a Lie algebra L over a field of characteristic 0 is an (A)-algebra if and only if any $x \in L$ such that $(ad x)^k = 0$ for some $k \ge 2$ satisfies ad x = 0. On the other hand, S. Tôgô [3] has considered a Lie algebra L satisfying the condition that $(ad x)^2 = 0$ implies ad x=0, and has given an example of such a Lie algebra which is solvable but not abelian. This is not an (A)-algebra since any solvable (A)-algebra is abelian ([1], [2]). Thus we are led to consider a Lie algebra which satisfies the condition that $(ad x)^k = 0$ implies ad x=0 for a fixed integer $k \ge 2$. We shall call such a Lie algebra to be an (A_k) -algebra. In this paper we shall investigete the properties of (A_k) -algebras.

It will be shown that a solvable (resp. nilpotent) Lie algebra over a field of characteristic 0 is an (A_k) -algebra with $k \ge 3$ (resp. $k \ge 2$) if and only if it is abelian. We shall show that an (A_2) -algebra is not always an (A_k) -algebra with $k \ge 3$, much less an (A)-algebra. As to (A_k) -algebras with $k \ge 3$, if the basic field is algebraically closed and of characteristic 0, we can show that an (A_k) -algebra is abelian and so an (A)-algebra. A detailed discussion about (A_2) -algebras is also given.

The author wishes to express his gratitude to Dr. S. Tôgô for his encouragement given during the preparation of this paper.

Notations. We denote by $\boldsymbol{\emptyset}$ a field of arbitrary characteristic unless otherwise stated and by L a finite dimensional Lie algebra over a field $\boldsymbol{\emptyset}$. We denote by Z(L) the center of L and by

$$Z_0(L) = Z(L) \subset Z_1(L) \subset Z_2(L) \subset \cdots \subset Z_n(L) \subset \cdots$$

the ascending central series of L. For a subspace U of L the centralizer of U in L will be denoted by C(U).

1. We start with the following

DEFINITION 1. For an integer $k \ge 2$, we call a Lie algebra L over a field Φ