Geometrical Association Schemes and Fractional Factorial Designs

Yoshio Fuju*

(Received September 20, 1967)

1. Summary

In this paper an attempt is made to throw light on the algebraic structure of symmetrical s^{k-p} -fractional factorial designs, where s is not necessary 2 but a prime power. For such purpose a geometrical factorial association scheme of PG(k-1, s)-type and the corresponding s^{k-p} -fractional factorial association scheme are introduced in sections 2 and 3 respectively. The corresponding association algebras $\mathfrak{A}(PG(k-1, s))$ and $\mathfrak{A}(s^{k-p}-Fr)$ are also introduced there.

Mutually orthogonal idempotents of those algebras are given in section 4. The notion of fractionally similar mapping is introduced in section 5 and the relationship between $\mathfrak{A}(\mathrm{PG}(k-1, s))$ and $\mathfrak{A}(s^{k-p}-\mathrm{Fr})$ is investigated there. A general definition of the classical notion of aliases is given in section 6. Blocking of the fractional factorial designs is discussed in section 7 in relation to the notion of partial confounding and the pseudo-block factors.

The following notation is used throughout this paper:

- I_n : The unit matrix of order n.
- G_n : An $n \times n$ matrix whose elements are all unity.
- A': Transpose of a matrix A.
- $A \otimes B$: Kronecker product of the matrices $A = ||a_{ij}||$ and B, i.e., $A \otimes B = ||a_{ij}B||$.
- $[A_i; i=1, ..., m]$: An algebra generated by the linear closure of those matrices indicated in the [].
- GF(s): A finite field consists of $s (=q^u)$ elements, where q is a prime integer and u is a positive integer. An element a in GF(s) is represented by the coordinate representation or polynomial representation, i.e., $a = \langle a^{(1)}, ..., a^{(u)} \rangle$ where $a^{(i)}$ is an element of GF(q), i=1, 2,..., u.

EG(k, s): A k-dimensional Euclidean space over GF(s).

PG(k-1, s): A k-1-dimensional projective space over GF(s).

 $\mathfrak{P}(A)$: A subspace of PG(k-1, s) generated by the linear closure of column vectors of a matrix A.

^{*} This work was supported in part by a research grant of the Sakkokai Fundation.