Geometrical Association Schemes and Fractional Factorial Designs

Yoshio Fujir*
(Received September 20, 1967)

1. Summary

In this paper an attempt is made to throw light on the algebraic structure of symmetrical s^{k-p}-fractional factorial designs, where s is not necessary 2 but a prime power. For such purpose a geometrical factorial association scheme of $\mathrm{PG}(k-1, s)$-type and the corresponding s^{k-p}-fractional factorial association scheme are introduced in sections 2 and 3 respectively. The corresponding association algebras $\mathfrak{N}(\mathrm{PG}(k-1, s))$ and $\mathfrak{A}\left(s^{k-p}-\mathrm{Fr}\right)$ are also introduced there.

Mutually orthogonal idempotents of those algebras are given in section 4. The notion of fractionally similar mapping is introduced in section 5 and the relationship between $\mathfrak{Y}(\operatorname{PG}(k-1, s))$ and $\mathfrak{Y}\left(s^{k-p}-\mathrm{Fr}\right)$ is investigated there. A general definition of the classical notion of aliases is given in section 6. Blocking of the fractional factorial designs is discussed in section 7 in relation to the notion of partial confounding and the pseudo-block factors.

The following notation is used throughout this paper:
I_{n} : The unit matrix of order n.
G_{n} : An $n \times n$ matrix whose elements are all unity.
$A^{\prime}:$ Transpose of a matrix A.
$A \otimes B: \quad$ Kronecker product of the matrices $A=\left\|a_{i j}\right\|$ and B, i.e., $A \otimes B$ $=\left\|a_{i j} B\right\|$.
$\left[A_{i} ; i=1, \ldots, m\right]$: An algebra generated by the linear closure of those matrices indicated in the [].
$\mathrm{GF}(s)$: A finite field consists of $s\left(=q^{u}\right)$ elements, where q is a prime integer and u is a positive integer. An element a in $\mathrm{GF}(s)$ is represented by the coordinate representation or polynomial representation, i.e., $a=<a^{(1)}, \ldots, a^{(u)}>$ where $a^{(i)}$ is an element of $\operatorname{GF}(q), i=1$, $2, \cdots, u$.
EG (k, s) : A k-dimensional Euclidean space over GF (s).
PG $(k-1, s)$: A k-1-dimensional projective space over GF (s).
$\mathfrak{B}(A)$: A subspace of $\mathrm{PG}(k-1, s)$ generated by the linear closure of column vectors of a matrix A.

[^0]
[^0]: * This work was supported in part by a research grant of the Sakkokai Fundation.

