Monotonicity of the Modified Likelihood Ratio Test for a Covariance Matrix

Hisao NAGAO

(Received August 19, 1967)

1. Introduction and Summary

In our previous paper [4], we have proved that the modified likelihood ratio test (=modified LR test) for the equality of a covariance matrix Σ to a given one Σ_0 in a *p*-variate normal distribution is unbiased. The power function of this test depends only on the characteristic roots of $\Sigma \Sigma_0^{-1}$. In this note we prove that this power function is a monotonically increasing (decreasing) function of each of the characteristic roots of $\Sigma \Sigma_0^{-1}$, when it is greater (less) than one, that is, it has the monotonicity property.

2. The monotonicity of the test

Let $p \times 1$ vectors $X_1, \dots, X_N (N > p)$ be a random sample from a multivariate normal distribution with unknown mean vector μ and unknown covariance matrix $\sum (\det \Sigma \neq 0)$. We wish to test the hypothesis $H: \Sigma = \sum_0$ against the alternatives $K: \Sigma \neq \sum_0$ where μ is unknown and \sum_0 is a given positive definite matrix (p.d. matrix). The LR critical region for this problem is given by, as in Anderson [1],

(2.1)
$$\boldsymbol{\omega}' = \left\{ \boldsymbol{S} \mid \boldsymbol{S} \text{ is p.d. and } \mid \boldsymbol{S} \boldsymbol{\Sigma}_{0}^{-1} \mid \frac{N}{2} \operatorname{etr} \left[-\frac{1}{2} \boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{S} \right] \leq c_{\alpha} \right\},$$

where the symbol etr means exptr, $S = \sum_{\alpha=1}^{N} (X_{\alpha} - \bar{X}) (X_{\alpha} - \bar{X})'$ and $\bar{X} = N^{-1} \sum_{\alpha=1}^{N} X_{\alpha}$. The constant c_{α} is determined such that the level of this test is α . By replacing $|S \sum_{0}^{-1}|^{N/2}$ to $|S \sum_{0}^{-1}|^{(N-1)/2}$ as in our previous paper [4], we can prove the following theorem.

THEOREM 1. For testing the hypothesis $H: \sum = \sum_0$ against the alternatives $K: \sum i \sum_0 for$ unknown mean μ , the following modified LR critical region given by

(2.2)
$$\boldsymbol{\omega} = \left\{ \mathbf{S} \mid \mathbf{S} \text{ is p.d. and } \mid \mathbf{S} \boldsymbol{\Sigma}_{0}^{-1} \mid^{\frac{n}{2}} \operatorname{etr} \left[-\frac{1}{2} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{S} \right] \leq c_{\alpha} \right\}$$

has the monotonicity property with respect to each of the *p*-characteristic roots of $\sum \sum_{0}^{-1}$, that is, $\operatorname{ch}(\sum \sum_{0}^{-1}) = (\delta_1^2, ..., \delta_p^2)$, where $S = \sum_{\alpha=1}^{N} (X_{\alpha} - \overline{X}) (X_{\alpha} - \overline{X})'$ and n = N-1. More precisely, the power function increases (decreases) with respect