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0. Introduction

In this paper, all rings considered are assumed to be commutative rings
with an identity element. It is known that an integral domain D may contain
an idempotent proper ideal A. But when this occurs, A is not finitely gener-
ated [21, p. 215], so that D is not Noetherian. Also, it is easy to show that
for any positive integer k there exists a ring R which is not a domain and
such that R contains an ideal A with the property that A^)A2^) •-•^)Ak =
Ak+1=. .. Whether an integral domain R with this property exists is a
heretofore open question which we answer affirmatively in §2.

Nakano in [16] has considered the problem of determining when an ideal
of D is idempotent, where D is the integral closure of Z, the domain of ordin-
ary integers, in an infinite algebraic number field. In fact, the paper [16] is
one of a series of papers which Nakano has written concerning the ideal struc-
ture of D. In [18], Ohm has generalized and simplified many of Nakano's
results from [16] and [17], showing that as far as the structure of the set of
primary ideals of D is concerned, the assumption that D is the integral closure
of Z in an algebraic number field is superfluous the essential requirement on
D being that it is a Prύfer domain according to the following definition: The
integral domain / is a Prϋfer domain if for each proper prime ideal P of /, JP

is a valuation ring; equivalently, / is a Prϋfer domain if each nonzero finitely
generated ideal of / is invertible [10, p. 554].

Following Ohm's example, we show in §3 that most of Nakano's results
in [16] carry over to the case when D is the integral closure of a fixed Prϋfer
domain Do in an algebraic extension of the quotient field of Do.

If / is an integral domain with quotient field K, a domain /0 between /
and K will be called an overrίng of /. In case /0 is a valuation ring, we call
/o a valuation overring of /. We say that / is an almost Dedekind domain if
for each maximal ideal M of /, JM is a rank one discrete valuation ring [5],

in

1. Preliminary results on Prΐifer domains.

We list in this section some results in the theory of Prϋfer domains


