Idempotent Ideals and Unions of Nets of Prüfer Domains

Jimmy T. ARNOLD and Robert GILMER (Received May 15, 1967)

0. Introduction

In this paper, all rings considered are assumed to be commutative rings with an identity element. It is known that an integral domain D may contain an idempotent proper ideal A. But when this occurs, A is not finitely generated [21, p. 215], so that D is not Noetherian. Also, it is easy to show that for any positive integer k there exists a ring R which is not a domain and such that R contains an ideal A with the property that $A \supset A^2 \supset \cdots \supset A^k =$ $A^{k+1} = \cdots$. Whether an integral domain R with this property exists is a heretofore open question which we answer affirmatively in §2.

Nakano in [16] has considered the problem of determining when an ideal of D is idempotent, where D is the integral closure of Z, the domain of ordinary integers, in an infinite algebraic number field. In fact, the paper [16] is one of a series of papers which Nakano has written concerning the ideal structure of D. In [18], Ohm has generalized and simplified many of Nakano's results from [16] and [17], showing that as far as the structure of the set of primary ideals of D is concerned, the assumption that D is the integral closure of Z in an algebraic number field is superfluous; the essential requirement on D being that it is a *Prüfer domain* according to the following definition: The integral domain J is a Prüfer domain if for each proper prime ideal P of J, J_P is a valuation ring; equivalently, J is a Prüfer domain if each nonzero finitely generated ideal of J is invertible [10, p. 554].

Following Ohm's example, we show in §3 that most of Nakano's results in [16] carry over to the case when D is the integral closure of a fixed Prüfer domain D_0 in an algebraic extension of the quotient field of D_0 .

If J is an integral domain with quotient field K, a domain J_0 between J and K will be called an *overring* of J. In case J_0 is a valuation ring, we call J_0 a valuation overring of J. We say that J is an almost Dedekind domain if for each maximal ideal M of J, J_M is a rank one discrete valuation ring [5], [1].

1. Preliminary results on Prüfer domains.

We list in this section some results in the theory of Prüfer domains