J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 55-83

On a Class of Lie Algebras

Shigeaki Tôgô (Received February 20, 1968)

Introduction

In the previous paper [4], we have given an estimate for the dimensionality of the derivation algebra of a Lie algebra L satisfying the condition that $(ad x)^2 = 0$ for $x \in L$ implies ad x=0. Such a Lie algebra will be referred to as an (A₂)-algebra in this paper according to the definition given in Jôichi [2], which investigates the (A_k)-algebras, $k \ge 2$, with intention to obtain the analogues to the (A)-algebras. He showed that the (A₂)-algebras have a different situation from the other classes of (A_k)-algebras, $k \ge 3$. But the problem of characterizing the (A₂)-algebras remains unsolved. The purpose of this paper is to make a detailed study of this class of Lie algebras.

It is known [3] that every semisimple Lie algebra over the field of complex numbers contains no non-zero element x with $(ad x)^2=0$. We shall show that every Lie algebra over a field $\boldsymbol{\vartheta}$ of characteristic $\neq 2$ whose Killing form is non-degenerate has the same property. By making use of this result we shall show that, when the basic field $\boldsymbol{\vartheta}$ is of characteristic 0, L is an (A_2) algebra if and only if every element x of the nil radical N such that $(ad x)^2=0$ belongs to the center Z(L), and if and only if L is either reductive, or $L \supset N \supset Z(N) = Z(L) \supseteq N^2 \neq (0)$ and $(ad x)^2 \neq 0$ for any $x \in N \setminus Z(L)$. This characterization will be used in classifying certain types of solvable (A_2) -algebras. A solvable (A_2) -algebra is not generally abelian. We shall show that if $\boldsymbol{\vartheta}$ is an algebraically closed field of characteristic 0, then every solvable (A_2) algebra over a field $\boldsymbol{\vartheta}$ is abelian. The latter half of the paper will be devoted to the study of solvable (A_2) -algebras, in particular, to the study of solvable (A_2) -algebras L such that dim N/Z(L) is 2 or 3 and of solvable (A_2) -algebras of low dimensionalities.

§1.

Throughout this paper we denote by L a finite dimensional Lie algebra over a field ϕ and denote by R, N and Z(L) the radical, the nil radical and the center of L respectively.

Following the terminology employed in [2], we call L to be an (A_2) -algebra provided that it satisfies the following condition:

(A₂) Every element x of L such that $(ad x)^2 = 0$ satisfies ad x = 0, that is, belongs to Z(L).

We first quote a result shown in Theorem 1 in [2] as the following