On the Vector Bundles $m\xi_n$ over Real Projective Spaces

Toshio Yoshida

(Received February 22, 1968)

§1. Introduction

Let ξ_n be the canonical line bundle over *n*-dimensional real projective space RP^n , and $m\xi_n$ the Whitney sum of *m*-copies of it.

The purpose of this note is to study the number $span m\xi_n$ of the linearly independent cross-sections of $m\xi_n$. These are related to the immersion problems of RP^n in the Euclidean space R^m by [2], and also to the submersion problems of $P_k^n = RP^n - RP^{k-1}$ in R^m by [7] and Theorem 2.4 below.

In §2, we study the simple properties of span $m\xi_n$. In order to make further calculations, we consider in §3 the Postnikov resolution of the universal sphere bundle and characterize the third k-invariant by the methods of [9], where the results obtained may be contained in [5]. These are applied to span $m\xi_n$ in §4, and we consider the submersion problems of P_k^n in §5. The author expresses his hearty thanks to Prof. M. Sugawara and Dr. T. Kobayashi for their valuable suggestions and discussions.

§2. Some properties of $m\xi_n$

If ξ is a real vector bundle, we denote by $span \xi$ the maximum number of the linearly independent cross-sections of ξ . Especially, when M is a C^{∞} -manifold, we denote by span M the $span \tau(M)$, where $\tau(M)$ is the tangent vector bundle of M.

The following two lemmas are well known.

LEMMA 2.1. Let $f: X \rightarrow Y$ be a homotopy equivalence between CW-complexes X and Y, and ξ be a real vector bundle over Y. Then

$$span f^{*} \xi = span \xi,$$

where $f^{\sharp} \xi$ is the induced bundle of ξ by f.

LEMMA 2.2. Let ξ be a real vector bundle over a CW-complex X. If $\dim \xi > \dim X$, then $\operatorname{span} \xi \ge \dim \xi - \dim X$, and

$$span(\xi \oplus 1) = 1 + span\xi,$$

where \oplus is the Whitney sum and 1 in the left hand side is the 1-dimensional trivial bundle over X.

Now, let ξ_n be the canonical line bundle over the *n*-dimensional real pro-