Non-Immersion Theorems for Lens Spaces. II

Dedicated to Professor Atuo Komatu on his 60th birthday

Teiichi Kobayashi

(Received September 19, 1968)

§1. Introduction

Throughout this note we assume that p is an odd prime. Let Z_p be the cyclic group of order p with generator γ . Let S^{2n+1} be the unit sphere in complex (n+1)-space. Define an action of Z_p on S^{2n+1} by the formula:

$$\gamma(z_0, z_1, ..., z_n) = (\lambda z_0, \lambda z_1, ..., \lambda z_n), \text{ where } \lambda = e^{2\pi i/p},$$

for $(z_0, z_1, ..., z_n) \in S^{2n+1}$. The orbit space S^{2n+1}/Z_p is the lens space mod p and is written by $L^n(p)$. It is a compact, connected, orientable C^{∞} -manifold of dimension 2n+1 and has the structure of a *CW*-complex with one cell in each dimension 0, 1, ..., 2n+1. Let $L_0^n(p)$ be the 2n-skeleton of $L^n(p)$.

The purpose of this paper is to prove some results on the stable homotopy type of the stunted space $L_0^n(p)/L_0^m(p)$ (n > m) and on the non-immersibility of the lens space $L^n(p)$ in the Euclidean space.

After some preparations in §2, we determine the structure of the reduced Grothendieck ring $\tilde{K}(L_0^n(p)/L_0^m(p))$ of complex vector bundles in §3. Using the Adams operation we shall prove the following result in §4.

THEOREM A. Let n > m. If $L_0^n(p)/L_0^m(p)$ is stably homotopy equivalent to $L_0^{n+t}(p)/L_0^{m+t}(p)$, then $t \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$.

We notice that the following result is known by Theorem 3 of [4]: $L_0^n(p)/L_0^m(p)$ is stably homotopy equivalent to $L_0^{n+t}(p)/L_0^{m+t}(p)$, if $t \equiv 0 \pmod{p^{\lfloor (n-m)/(p-1) \rfloor}}$.

Together with Theorem 3 of [5], Theorem A can be used to give a condition for the immersibility of $L^{n}(p)$ in the Euclidean space $R^{2n+2m+1}$.

THEOREM B. Let n and m be integers with n > m > 0. Assume that $n+m + 1 \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. If there is an immersion of $L^n(p)$ in $R^{2n+2m+1}$, then the Euler class of its normal bundle is zero.

This will be proved in §5. From Theorem B we have the following result.

THEOREM C. Let n and m be integers with n > m > 0. Assume that the following two conditions are satisfied: