J. Sci. Hiroshima Univ. Ser. A-I 33 (1969), 71–72

A Remark on the Homeomorphism Group of a Manifold

Yasuko Nomura (Received March 5, 1969)

Let *M* be a connected separable metric space each point of which has a neighborhood (open set in the metric topology on *M*) whose closure in *M* is homeomorphic to $C_n(0; 1) = \{x \in \mathbb{R}^n \mid d(x, 0) \leq 1\}$. Such a space *M* is simply called an *n*-manifold. Let G(M) denote the group of all homeomorphisms of an *n*-manifold *M*, and $G^0(M)$ the subgroup of G(M) generated by all *h* in G(M)such that, for some *internal* closed *n*-cell *F*, $h \mid M - F =$ identity. Let $G^I(M)$ denote the subgroup of G(M) generated by all *h* in G(M) such that, for some closed *n*-cell *F*, $h \mid F =$ identity. Let P(F) be the set of all *h* in G(M) such that, for some *f* in $G^0(M)$, $h \mid F = f \mid F$, and Q(F) the set of all *h* in G(M) such that, for some *f* in $G^0(M)$, h(F) = f(F) and $f^{-1}h \mid B$ is in $G^0(B)$, where *F* is an *internal* closed *n*-cell in *M* and B = Bndy *F*. Let T(F) be the set of all cells in *M* tame with respect to *F*.

It has been proved in [1] that, for an *n*-manifold $M(n \leq 3)$, there is an internal closed *n*-cell F_0 in *M* such that, for any *h* in G(M), there is an *f* in $G^0(M)$ such that $f(F_0) = h(F_0)$ (setwise), and then F_0 is called a *pivot* cell. In connection with such a pivot cell the following theorems have been obtained in [1].

THEOREM 11 (Fisher). Let M be a manifold, dim $M \leq 3$, and let F_0 be a pivot cell in M. For every F in $T(F_0)$, P(F) is a normal subgroup of G(M). For each F in $T(F_0)$, $P(F)=P(F_0)$.

THEOREM 12 (Fisher). Let M be a manifold, dim $M \leq 3$, and let F_0 be a pivot cell in M. For any F in $T(F_0)$, $P(F)=G^I(M)$. Hence an h in G(M) is in $G^I(M)$, so that $h=h_1\cdots h_k$, h_i the identity inside some closed n-cell F_i in M (n= dim M), if and only if for any n-cell F in M tame with respect to F_0 , there is a deformation f of M such that f(x)=h(x) for every x in F.

Although the existence of the pivot cell in M is unknown for dim $M \ge 4$, in this note we shall show that, for any internal closed *n*-cell F in an *n*-manifold $M(1 \le n \le \infty)$, the above theorems can be generalized as the following theorem and its corollary.

THEOREM. Let M be an n-manifold, and let F_0 and F be any internal closed n-cells in M. Then $P(F_0) = P(F)$ and P(F) is a normal subgroup of G(M).

PROOF. According to the theorem 1 in [1], there is an f in $G^0(M)$ such