Note on Outer Derivations of Lie Algebras

Shigeaki Tôgô

(Received March 5, 1969)

Introduction

Let \mathfrak{O} be the set of Lie algebras L over a field \emptyset satisfying the conditions that $L \neq L^2$ and $Z(L) \neq (0)$, where Z(L) denotes the center of L. Clearly every non-trivial nilpotent Lie algebra belongs to \mathfrak{O} . It is known ([4], [6], [8], [13]) that every $L \in \mathfrak{O}$ has an outer derivation. In [13] we have introduced the notion of Lie algebras of type (T) and shown that every Lie algebra L of type (T) such that $L^{(1)} \neq L^{(2)}$ admits an outer derivation belonging to \mathfrak{R} , the radical of the derivation algebra $\mathfrak{D}(L)$. It has been also shown that if $L \in \mathfrak{O}$ is not of type (T) there exists an abelian ideal of $\mathfrak{D}(L)$ containing an outer derivation. From these observations it seems to be interesting to study the case where L is of type (T) such that $L^{(1)}=L^{(2)}$. The main purpose of this note is to give a detailed consideration to the case just mentioned. Some additional remarks will be also given.

In Section 2 we shall show that a Lie algebra L of type (T) such that dim $Z(L) \neq 1$ or $\boldsymbol{\emptyset}$ is of characteristic 2 admits an outer derivation in \mathfrak{R} and that a Lie algebra L of type (T) such that $L^{(1)} = L^{(2)}$, dim Z(L) = 1 and $\boldsymbol{\emptyset}$ is of characteristic $\neq 2$ admits an outer derivation in \mathfrak{R} if and only if $L^{(1)}$ does (Theorem 2.2). In Section 3, we shall show that a Lie algebra L over a field of characteristic 0 admits a semisimple outer derivation in \mathfrak{R} if the radical of L does (Proposition 3.1), and based on this result, for a Lie algebra L of type (T) such that $L^{(1)} = L^{(2)}$ and dim Z(L) = 1, we shall give several properties of the radical of $L^{(1)}$, each of which ensures the existence of a semisimple outer derivation in \mathfrak{R} (Theorem 3.6).

In [12] we have studied the existence of the automorphisms of L, when \emptyset is of characteristic 0, outside the connected algebraic group such that the corresponding Lie algebra is the algebraic hull $\mathfrak{I}(L)^*$ of $\mathfrak{I}(L)$, the ideal of $\mathfrak{D}(L)$ consisting of all inner derivations of L. The final section 4 will be devoted to the discussions about the existence of the derivations of $L \in \mathfrak{O}$ which are contained in \mathfrak{R} but not in $\mathfrak{I}(L)^*$.

§ 1. Preliminaries and notations

Throughout this note we shall consider a finite dimensional Lie algebra L over a field \emptyset . We denote by R the radical of L and by Z(L) the center of L.

As in [13], we shall denote by \mathbb{O} the class of all the Lie algebras L over