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§ 1. Introduction

Let M be a differentiable manifold with a linear connection, and let Φx

be the homogeneous holonomy group at a point % e M. If the tangent vector
space at x is decomposed into a direct sum of subspaces which are invariant
under Φx, then by the parallel displacements along curves on M, parallel dis-
tributions are defined on M corresponding to those subspaces. If M is a
Riemannian manifold and its connection is Riemannian, then by the de Rham
decomposition theorem (Q7] or [_4Γ\ p. 185) the above parallel distributions are
completely integrable and, at any point, M is locally isometric to the direct
product of leaves through the point. Moreover, if M is simply connected and
complete, it is globally isometric to the direct product of those leaves (see also
[7] or [4] p. 192).

The above local and global decomposition theorems of de Rham are gene-
ralized to the case of pseudo-Riemannian manifold by H. Wu ([9]). On the
other hand, in [2], S. Kashiwabara generalized the global decomposition the-
orem to the case of linearly connected manifold without torsion, under the
assumption of local decomposability.

In the present paper, a linearly connected manifold with torsion will be
treated and a condition of local decomposition will be given in terms of cur-
vature and torsion (Theorem 1). Next, in §4, the results will be applied to a
reductive homogeneous space with the canonical connection of the second kind,
using the notion of algebra introduced by A. A. Sagle in [8].

Finally, in § 5, we shall remark about the decomposition of a local loop
with any point in M as its origin (£3]), corresponding to the local decomposi-
tion of the linearly connected manifold M.
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§ 2. Integrability of parallel distributions

Let (ikf, V) be a connected differentiable manifold with a linear connection,
where V means the covariant differentiation of the connection. The curvature
tensor R and the torsion tensor S are defined by the formulas:


