Comparison of the Classes of Wiener Functions

Fumi-Yuki Maeda

(Received September 20, 1969)

Introduction

For a harmonic space satisfying the axioms of M. Brelot [1], one can define the notion of Wiener functions as a generalization of that for a Riemann surface or a Green space (see [2]). The class of Wiener functions may be used to see global properties of the harmonic space; in particular, in order to show that a compactification of the base space be resolutive with respect to the Dirichlet problem, it is enough to verify that every continuous function on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus, given two harmonic structures \mathfrak{H}_1 and \mathfrak{H}_2 on the same base space \mathcal{Q} , it may be useful to know when the inclusion $BW^{(1)} \subset BW^{(2)}$ holds, where $BW^{(i)}(i=1,$ 2) is the class of bounded Wiener functions with respect to \mathfrak{H}_i (i=1, 2). In this paper, we shall give a sufficient condition for the above inclusion, which includes the conditions given in [4] and [5] for special cases.

1. Harmonic spaces and Wiener functions

In this paper, we assume that a harmonic space $(\mathcal{Q}, \mathfrak{H}) = {\mathfrak{H}(G)}_{G:open}$, satisfies Axioms 1, 2 and 3 of M. Brelot [1] and that \mathcal{Q} is non-compact. For an open set G in \mathcal{Q} , the set of all superharmonic functions on G with respect to $(\mathcal{Q}, \mathfrak{H})$ is denoted by $\mathfrak{I}_{\mathfrak{H}}(G)$. The set of all potentials with respect to $(\mathcal{Q}, \mathfrak{H})$ is denoted by $\mathcal{P}_{\mathfrak{H}}$. In general, given a family \mathcal{A} of (extended) real-valued functions, we use the notation $\mathcal{A}^+ = \{f \in \mathcal{A}; f \geq 0\}$ and $\mathcal{B}\mathcal{A} = \{f \in \mathcal{A}; f: \text{ bounded}\}$.

We furthermore assume that $(\mathcal{Q}, \mathfrak{H})$ satisfies

Axiom 4. $1 \in \mathcal{O}_{\mathfrak{H}}(\Omega)$ and $\mathcal{P}_{\mathfrak{H}} \neq \{0\}$.

Remark that under Axiom 4 the following minimum principle holds (see [1]):

If $v \in \mathcal{O}_{\mathfrak{H}}(\mathcal{Q})$ and if for any $\varepsilon > 0$ there exists a compact set K in \mathcal{Q} such that $v(x) > -\varepsilon$ on $\mathcal{Q} - K$, then $v \ge 0$.

Given an extended real-valued function f on Ω , we consider the classes

$$\overline{\mathfrak{Q}}_{\mathfrak{H}}(f) = \left\{ v \in \mathfrak{S}_{\mathfrak{H}}(\mathcal{Q}); \text{ there exists a compact set } K_v \text{ in } \mathcal{Q} \right\}$$
 such that $v \ge f \text{ on } \mathcal{Q} - K_v$

and