Some Properties of the Kuramochi Boundary

Fumi-Yuki Maeda

(Received September 20, 1969)

Introduction

It has been shown that the Kuramochi boundary of a Riemann surface or of a Green space has many useful potential-theoretic properties (see [9], [4], [11], etc.). In this paper, we shall give a few more properties of the Kuramochi boundary.

We consider a Green space \mathcal{Q} in the sense of Brelot-Choquet [3] and denote by \mathcal{Q}^* its Kuramochi compactification of \mathcal{Q} (see [4], [9] and [14] for the definition). Let Γ be the harmonic boundary on $\mathcal{\Delta} = \mathcal{Q}^* - \mathcal{Q}$, i.e., the support of a harmonic measure $\omega \equiv \omega_{x_0}$ ($x_0 \in \mathcal{Q}$). By definition, Γ is a non-empty closed subset of $\mathcal{\Delta}$.

Let K_0 be a fixed compact ball in \mathcal{Q} . For any resolutive function φ on \mathcal{A} , let H_{φ} be the Dirichlet solution on $\mathcal{Q}-K_0$ with boundary values φ on \mathcal{A} and 0 on ∂K_0 (=the relative boundary of K_0). For the existence of H_{φ} , see e.g. [11]. If φ is a function on Γ and is the restriction of a resolutive function $\tilde{\varphi}$ on \mathcal{A} , then $H_{\tilde{\varphi}}$ is uniquely determined by φ ; we denote it also by H_{φ} . With this convention, we consider the space $\mathbf{R}_D(\Gamma)$ of functions φ on Γ which are restrictions of resolutive functions on \mathcal{A} and for which $H_{\varphi} \in \mathbf{HD}_0$. Here, \mathbf{HD}_0 is the space of all harmonic functions u on $\mathcal{Q}-K_0$ having finite Dirichlet integral D[u] on $\mathcal{Q}-K_0$ and vanishing on ∂K_0 . Identifying two functions which are equal ω -almost everywhere, we can define a norm $\|\cdot\|$ on $\mathbf{R}_D(\Gamma)$ by

$$\|\varphi\|^2 = D[H_{\varphi}]$$

for $\varphi \in \mathbf{R}_D(\Gamma)$.

In this paper, we shall show the following three properties: (1) The space $\mathbf{R}_D(\Gamma)$ is a Dirichlet space in the sense of Beurling-Deny [1] on Γ ; (2) The capacity on Γ associated with this Dirichlet space coincides with the Kuramochi capacity ([9] and [4]); (3) The solution of a boundary value problem (of Neumann type) is expressed in terms of the Kuramochi kernel.

1. Dirichlet space $\mathbf{R}_D(\Gamma)$

The following lemma is a consequence of Lemma 5.3 in [13] (also cf. [11]):

LEMMA 1. There exists a constant M>0 such that