Duality Theorems for Continuous Linear Programming Problems

Atsushi MURAKAMI and Maretsugu YAMASAKI (Received September 20, 1969)

§1. Introduction

Continuous linear programmings were first considered by W.F. Tyndall [7] as a generalization of "bottle-neck problems" in dynamic programming. N. Levinson [6], M.A. Hanson [3] and M.A. Hanson and B. Mond [4] generalized the results in [7].

In this paper we shall apply the theory of infinite linear programming studied by K.S. Kretschmer [5] and M. Yamasaki [8] to the investigation of the continuous linear programmings. Our main purpose is to improve the duality theorems in [6] and [7] obtained by approximation from the classical finite duality theorem.

In order to state the continuous linear programmings, we shall introduce some notation. If D(t) is a matrix on the interval [0, T] $(0 < T < \infty)$ in the real line with entries $d_{ij}(t)$ and g(t) is a scalar on [0, T] such that every entry satisfies

$$d_{ij}(t) \leq g(t),$$

then the notation

$$D(t) \leq g(t)$$

will be used. If $\tilde{D}(t)$ is a matrix on [0, T] with the same number of rows and columns as D(t), then $D(t) \leq \tilde{D}(t)$ means that $d_{ij}(t) \leq \tilde{d}_{ij}(t)$ for all entries. For a matrix $D=(d_{ij})$ and a vector $d=(d_i)$, we set

$$|D| = \sum_{i,j} |d_{ij}|$$
 and $|d| = \sum_{i} |d_{i}|$.

For an *n* vector *d*, an *m* vector *e* and an $n \times m$ matrix *D*, let *dD* and *De* denote the vector-matrix products. Note that we do not use the familiar notation Dd^{T} . For two *n* vectors $x(t) = (x_{i}(t))$ and $y(t) = (y_{i}(t))$, we set

$$x(t) \cdot y(t) = \sum_{i=1}^{n} x_i(t) y_i(t).$$

In this paper we always assume that

$$B(t) = (b_{ij}(t))$$
 is an $n \times m$ matrix on $[0, T]$,