
J . Sci. HIROSHIMA UNIV. SER. A-I
34 (1970), 69-72

On Purely Inseparable Extensions

of Algebraic Function Fields
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In this note we shall be concerned with modular purely inseparable
extensions of algebraic function fields over a perfect field A; of a positive char-
actristic p. We shall first see that such an extension has a close connection
with separating transcendence bases (Proposition 1), and then give a
geometric interpretation of it (Proposition 2). Then if a is a purely
inseparable isogeny of a group variety G onto another one G defined over k,
we shall show that the rational function field k(G) of G over A; is a modular
extension of a*(k(G')) by using some results by P. Cartier and M. E. Sweedler
*n C2H> P>3 and [β~], where α* is the comorphism corresponding to a (Propo-
sition 3), and from this fact we shall show the existence of a favourable
system of local parameters at the unit point e of G with respect to a (Theorem
and its Corollary).

1. In the sequel let A; be a perfect field of a positive characteristic p
exclusively.

LEMMA 1. Let K be an algebraic function field over k and L a purely in-

separable extension of exponent 1 over K such that [_L\ K~]=ps. Then there

exists a separating transcendence basis {ίi, ••>*»} of L o v e r k such that L —

K(ti,--,ts) and that {tp

u•••,/£, ts+iy 9tn} is a separating transcendence basis

of K over k.

This result is contained in the proof of Barsotti's Theorem in §2. 3 of
[1]. Therefore we omit the proof.

PROPOSITION 1. Let K be an algebraic function field over k and L a purely

inseparable extension of K such that L is isomorphic to a tensor product K(x{)

®A- ® ^ ( ^ S ) of simple extensions K(xϊ) over K. Then the transcendental

degree n is not less than s and there exist n — s elements ί s + i , , tn in K such

that {xu- ,xs, ts+iy,tn} (resp. {χ{\- , xp

s\ ts+u ,tn}) is a separating

transcendence basis of L over k (resp. K over k), where e{ is the exponent of %i

over K for i = l, #,•••, s.

PROOF. If we put yi = xTi~1 for each i = l, 29- -,s, L'=K(yu---, γs) is iso-

morphic to K(yι)®κ ®K(ys) and is of exponent 1 over k. By Lemma 1,
there exists a separating transcendence basis {ίi, ,ί»} of L' over k such
that {ίί, -, tp

s, £s+i, , tn} is that of K over k. Then we can easily see that


