On KD-null Sets in N-dimensional Euclidean Space

Hiromichi YAMAMOTO (Received February 24, 1970)

Introduction

Ahlfors and Beurling [1] introduced the notion of a null set of class N_D in the complex plane: A compact set E is a null set of class N_D if and only if every analytic function in $D(\mathcal{Q}-E)$ can be extended to a function in $D(\mathcal{Q})$ for a domain \mathcal{Q} containing E, where $D(\mathcal{Q})$ is the class of single-valued analytic functions in \mathcal{Q} with finite Dirichlet integrals. They characterized a null set of class N_D by means of the span, the extremal length and the others. On the other hand, the class KD, which consists of all harmonic functions uwith finite Dirichlet integrals such that *du is semiexact, was considered on Riemann surfaces and various characterizations of the class O_{KD} were given by many authors; see, for example, Rodin [5], Royden [7], Sario [8]. We can consider the class KD also on an N-dimensional euclidean space \mathbb{R}^N ($N \geq$ 3) and define KD-null sets as a compact set E such that any function in $KD(\mathcal{Q}-E)$ can be extended to a function in $KD(\mathcal{Q})$ for a bounded domain \mathcal{Q} containing E.

In the present paper, we shall prove some theorems on KD-null sets analogous to those on null sets of class N_D . In §3, we observe some relations between KD-null set and the span, which was introduced by Rodin and Sario [6] in Riemannian manifolds. Moreover we show that the N-dimensional Lebesgue measure of a KD-null set is equal to zero. In §4, we shall give a necessary condition for a set to be KD-null in terms of the extremal length.

The author is indebted to Professor M. Ohtsuka for his advice and encouragement.

§1. Preliminaries

We shall denote by $x = (x_1, x_2, ..., x_N)$ a point in \mathbb{R}^N , and set $|x| = \sqrt{x_1^2 + x_2^2 + \cdots + x_N^2}$. By an unbounded domain in \mathbb{R}^N we shall mean a domain which is equal to the complement of a compact set. A harmonic function u defined in an unbounded domain is called regular at infinity if $\lim_{|x|\to\infty} u(x) = 0$. Consider a C^1 -surface τ which divides \mathbb{R}^N into a bounded domain and an unbounded domain. When we consider the normal derivative $\frac{\partial}{\partial n}$ at a point of τ , the normal is drawn in the direction of the unbounded domain.