Note on the Span of Certain Manifolds

Toshio Yoshida
(Received February 14, 1970)

§ 1. Introduction

For a real vector bundle ξ, we denote by $\operatorname{Span} \xi$ the maximum number of the linearly independent cross-sections of ξ. Especially, we denote Span $M=\operatorname{Span} \tau M$, where τM is the tangent bundle of a C^{∞}-manifold M.

In this note, we prove the following theorem, which is the conjecture of D. Sjerve [4, p. 104, (4.6)].

Theorem 1. Let π denote any finite group of odd order, not necessarily abelian, acting freely as diffeomorphisms on some standard sphere S^{n}, and M^{n} $=S^{n} / \pi$ be the orbit manifold. Then

$$
\operatorname{Span} M^{n}=\operatorname{Span} S^{n}
$$

holds for $n \neq 7$.
Also, we shall give counter examples to the following conjecture of E . Thomas [7, p. 655, Conjecture 5] by $S^{1} \times P_{n}(C)$ and the mod 3 standard lens space $L^{3}(3)$, where $n=u \cdot 2^{2+4 d}-1(u$: odd, $d \geqq 1)$ and $P_{n}(C)$ is the complex n-dimensional projective space.

Conjecture of E. Thomas: Let M be a compact n-manifold, n odd, and let k be a positive integer such that $k \leqq$ Span S^{n}. If $w_{1} M=\cdots=w_{k} M=0$, then Span $M \geqq k$, where $w_{i} M$ is the i-th Stiefel-Whitney class of M.

§ 2. Proof of Theorem 1

Theorem 2. [5, p. 551], [6, p. 53]. Let ξ^{n} be an orientable n-dimensional real vector bundle over an n-dimensional complex X. Then,

$$
\text { Span } \xi^{n}<\operatorname{Span} S^{n} \text { implies Span }\left(\xi^{n} \oplus 1\right)=1+\operatorname{Span} \xi^{n},
$$

where $\xi^{n} \oplus 1$ is the Whitney sum of ξ^{n} and 1-dimensional trivial bundle over X.
Proof. Put $k=\operatorname{Span}\left(\xi^{n} \oplus 1\right)$, then there exists an $(n+1-k)$-dimensional vector bundle η over X such that $\xi^{n} \oplus 1=\eta \oplus(k-1) \oplus 1$. So, by [6, Theorem $1], \operatorname{Span}(\eta \oplus(k-1))=\operatorname{Span} \xi^{n}$. This implies $\operatorname{Span}\left(\xi^{n} \oplus 1\right) \leqq 1+\operatorname{Span} \xi^{n}$. And, $\operatorname{Span}\left(\xi^{n} \oplus 1\right) \geqq 1+\operatorname{Span} \xi^{n}$ is clear.
q.e.d.

Next, we notice that the following theorem holds for the odd-dimensional manifold of Theorem 1. This theorem is Theorem A in [3, p. 545] where π

