Note on the Span of Certain Manifolds

Toshio Yoshida

(Received February 14, 1970)

§1. Introduction

For a real vector bundle ξ , we denote by $Span \ \xi$ the maximum number of the linearly independent cross-sections of ξ . Especially, we denote Span $M = Span \ \tau M$, where τM is the tangent bundle of a C° -manifold M.

In this note, we prove the following theorem, which is the conjecture of D. Sjerve [4, p. 104, (4.6)].

THEOREM 1. Let π denote any finite group of odd order, not necessarily abelian, acting freely as diffeomorphisms on some standard sphere S^n , and $M^n = S^n/\pi$ be the orbit manifold. Then

Span
$$M^n = Span S^n$$

holds for $n \neq 7$.

Also, we shall give counter examples to the following conjecture of E. Thomas [7, p. 655, Conjecture 5] by $S^1 \times P_n(C)$ and the mod 3 standard lens space $L^3(3)$, where $n = u \cdot 2^{2+4d} - 1(u: \text{odd}, d \ge 1)$ and $P_n(C)$ is the complex *n*-dimensional projective space.

Conjecture of E. Thomas: Let M be a compact n-manifold, n odd, and let k be a positive integer such that $k \leq Span S^n$. If $w_1M = \cdots = w_kM = 0$, then Span $M \geq k$, where w_iM is the i-th Stiefel-Whitney class of M.

§2. Proof of Theorem 1

THEOREM 2. [5, p. 551], [6, p. 53]. Let ξ^n be an orientable *n*-dimensional real vector bundle over an *n*-dimensional complex X. Then,

Span $\xi^n < \operatorname{Span} S^n$ implies $\operatorname{Span} (\xi^n \oplus 1) = 1 + \operatorname{Span} \xi^n$,

where $\xi^n \oplus 1$ is the Whitney sum of ξ^n and 1-dimensional trivial bundle over X.

PROOF. Put $k = \text{Span}(\xi^n \oplus 1)$, then there exists an (n+1-k)-dimensional vector bundle η over X such that $\xi^n \oplus 1 = \eta \oplus (k-1) \oplus 1$. So, by [6, Theorem 1], Span $(\eta \oplus (k-1)) = \text{Span } \xi^n$. This implies $\text{Span}(\xi^n \oplus 1) \leq 1 + \text{Span } \xi^n$. And, $\text{Span } (\xi^n \oplus 1) \geq 1 + \text{Span } \xi^n$ is clear. q.e.d.

Next, we notice that the following theorem holds for the odd-dimensional manifold of Theorem 1. This theorem is Theorem A in [3, p. 545] where π