On the Structure Space of a Direct Product of Rings

Kanroku Aoyama

(Received September 19, 1970)

§1. Introduction

It is known that, from the algebraic point of view, the ring E of entire functions has many interesting properties (see, for example, [3, §1, exerc. 12], [7] and [8]). Any residue ring $E /(f)$ by a non-zero entire function f is isomorphic to a direct product of homomorphic images of discrete valuation rings. This implies that, as far as the structure space is concerned, the study of the ring E is reduced to that of a direct product of discrete valuation rings. Thus, in this article, we shall mainly investigate the structure space of a direct product of commutative rings.

Every ring in this article will be assumed to be a commutative ring with an identity. In $\S 2$, as preliminaries, we shall give some relations between the structure space of a ring R, which will be denoted by $\operatorname{Spec}(R)$, and that of the Boolean algebra of idempotents in R. Next, in $\S 3$, we shall treat the case in which R is a direct product of local rings or integral domains; and in $\S 5$ the more restricted case, in which each factor of the product is a discrete valuation ring, will be treated by making use of some results on isolated subgroups of a totally ordered additive group which will be discussed in §4.

Finally, in $\S 6$, applying our theory to the ring of entire functions, we shall show how the algebraic properties of it, which was given by M. Henriksen, can be obtained (cf. [7], [8]).

The author wishes to express his thanks to Prof. M. Nishi for his valuable suggestions and encouragement.

§2. Preliminaries

The set of idempotents in a ring R will be denoted by $B(R)$, or simply by B. The set $B(R)$ forms a Boolean algebra provided with the following order relation: for any x, y in $B, x \leq y$ if and only if $x=y x$. In this case the complement x^{\prime} of x in B is $1-x, x \wedge y=x y, x \vee y=x+y-x y$, for any x, y in B.

The term "ideal" will be used with two meanings in this article. On the one hand, "ideal" will designate a ring ideal in a ring R. The word "ideal" will also be used to denote an ideal in a Boolean algebra $B(R)$, that is, a nonempty subset J of $B(R)$ such that $e \in J, f \in J$ implies $e \vee f \in J$, and $e \epsilon J, f \leq e$ implies $f \in J$. Obviously, if A is an ideal in a ring R, then $A \cap B(R)$ is an

