Harmonic and Full-harmonic Structures on a Differentiable Manifold

Fumi-Yuki Maeda (Received September 19, 1970)

Introduction

Let Ω be a bounded domain in the d-dimensional euclidean space ($d \ge 2$). G. Stampacchia [17] (also, C. B. Morrey Jr. [14] and O. A. Ladyzhenskaya and N. N. Ural'tzeva [9]) discussed properties of solutions of a second order elliptic partial differential equation on Ω of the form

(1)
$$Lu = -\sum_{i,j} \frac{\partial}{\partial x_j} \left(g_{ij} \frac{\partial u}{\partial x_i} + b_j u \right) + \sum_i a_i \frac{\partial u}{\partial x_i} + q u = 0$$

with not necessarily continuous coefficients. In fact, Stampacchia only assumed that coefficients g_{ij} , a_i , b_j and q are measurable functions on \mathcal{Q} satisfying the following conditions (2) and (3):

(2)
$$\sum g_{ij}\xi_i\xi_j \ge \nu |\xi|^2$$
 for some $\nu > 0$ and $|g_{ij}| \le M$.

(3) $a_i \in \mathbf{L}^d(\Omega)$, $b_j \in \mathbf{L}^r(\Omega)$, $q \in \mathbf{L}^{r/2}(\Omega)$ for r > d. (Cf. [9] and [14], in which it is assumed that $a_i \in \mathbf{L}^r(\Omega)$. In case d = 2, this assumption may be necessary; the paper [17] primarily concerns the case $d \ge 3$.)

On the ground of Stampacchia's work, R.-M. and M. Hervé [7] developed a theory of superharmonic functions associated with the equation (1), under an additional condition:

(4)
$$q - \sum_{i} \frac{\partial b_{i}}{\partial x_{i}} \ge 0$$
 and $q - \sum_{i} \frac{\partial a_{i}}{\partial x_{i}} \ge 0$ in the distribution sense.

In fact, they showed that the continuous solutions of (1) form a harmonic space on Ω in the sense of M. Brelot [1] and then constructed the corresponding Green function on Ω .

In this paper, we take a connected C^1 -manifold Ω and consider a contravariant tensor (g^{ij}) , contravariant vectors (a^i) and (b^j) and a function q on Ω which locally satisfy conditions (2) and (3). Our differential equation may be written as

(1')
$$Lu = \Delta u - \sum_{i} a^{i} \frac{\partial u}{\partial x_{i}} + \frac{1}{\sqrt{G}} \sum_{j} \frac{\partial}{\partial x_{j}} (\sqrt{G} b_{j} u) - q u = 0$$