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Introduction

Let 2 be a bounded domain in the d-dimensional euclidean space (d =2).
G. Stampacchia [17] (also, C. B. Morrey Jr. [14] and O. A. Ladyzhenskaya
and N. N. Ural’tzeva [ 9]) discussed properties of solutions of a second order
elliptic partial differential equation on 2 of the form
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with not necessarily continuous coefficients. In fact, Stampacchia only
assumed that coefficients g, a;, b, and ¢ are measurable functions on £
satisfying the following conditions (2) and (3):
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(B) a;e LYQ), b;e L'(2), g € L"*(2) for r>d. (Cf.[9] and [14], in which
it is assumed that a; € L'(2). In case d=2, this assumption may be neces-
sary; the paper [ 17 ] primarily concerns the case d =3.)

On the ground of Stampacchia’s work, R.-M. and M. Hervé [ 7] develop-
ed a theory of superharmonic functions associated with the equation (1),
under an additional condition:
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In fact, they showed that the continuous solutions of (1) form a harmonic
space on £ in the sense of M. Brelot [ 1] and then constructed the correspond-
ing Green function on £.

In this paper, we take a connected C'’-manifold 2 and consider a con-
travariant tensor (g”), contravariant vectors (o’) and (47) and a function ¢
on £ which locally satisfy conditions (2) and (8). Our differential equation
may be written as
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