On One-step Methods Utilizing the Second Derivative

Hisayoshi Shintani

(Received September 20, 1971)

1. Introduction

Given a differential equation

(1.1) y' = f(x, y)

and the initial condition $y(x_0) = y_0$, where the function

(1.2)
$$g(x, y) = f_x(x, y) + f(x, y)f_y(x, y)$$

is assumed to be sufficiently smooth. Let

(1.3)
$$x_i = x_0 + i\hbar, y_i = y(x_i) \quad (i = 1, 2, ...),$$

where h is a small increment in x and y(x) is the solution to the given initial value problem. We are concerned with the case where the approximate values z_i of y_i (i=1, 2,...) are computed by means of the one-step methods, and put

(1.4)
$$T(x_0, y_0; h) = z_1 - y_1.$$

The one-step method of order p with μ stages for approximating y_1 can be expressed as follows:

(1.5)
$$z_1 = y_0 + h \sum_{i=1}^{\mu} q_i t_i,$$

where

(1.6)
$$T(x_0, y_0; h) = O(h^{p+1}),$$

(1.7)
$$t_i = f(x_0 + a_i h, y_0 + h \sum_{j=1}^{\mu} b_{ij} t_j),$$

(1.8)
$$\sum_{j=1}^{\mu} b_{ij} = a_i \quad (i = 1, 2, ..., \mu).$$

The method is called *explicit* when $b_{ij}=0$ for $j \ge i$. It is well known $[2]^{1}$ that

¹⁾ Numbers in square brackets refer to the references listed at the end of this paper.