On Stable Homotopy Types of Stunted Lens Spaces

Teiichi Kobayashi and Masahiro Sugawara (Received Septmber 20, 1971)

§1. Introduction

The purpose of this note is to prove some results on the stable homotopy types of the stunted lens spaces analogous to those in $\lceil 8 \rceil$, $\lceil 9 \rceil$ and $\lceil 6 \rceil$.

The (2n+1)-dimensional standard lens space mod k is the orbit space

 $L^{n}(k) = S^{2n+1}/Z_{k}, Z_{k} = \{e^{2\pi l i/k} | l=0, 1, ..., k-1\}, (n>0),$

where the action is given by $z(z_0,...,z_n) = (zz_0,...,zz_n)$. Let $[z_0,...,z_n] \in L^n(k)$ denote the class of $(z_0,...,z_n) \in S^{2n+1}$. Imbed naturally $L^m(k) \subset L^n(k)$ by identifying $[z_0,...,z_m] = [z_0,...,z_m, 0,..., 0]$ for $m \leq n$, and consider the subspace

$$L_0^m(k) = \{ [z_0, \dots, z_m] | z_m \text{ is real} \ge 0 \} \subset L^m(k) \subset L^n(k).$$

Then $L^{m}(k)-L_{0}^{m}(k)$ and $L_{0}^{m}(k)-L^{m-1}(k)$ $(m \leq n)$ are (2m+1)- and 2m-cells which make $L^{n}(k)$ a finite CW-complex. The stunted spaces

$$L^{n}(k)/L^{m-1}(k), L^{n}(k)/L^{m}_{0}(k), L^{n}_{0}(k)/L^{m-1}(k) \text{ and } L^{n}_{0}(k)/L^{m}_{0}(k),$$

for $k = p^r$ where p is a prime and n > m, will be studied in this note.

We say that two spaces X and Y are stably homotopy equivalent (S-equivalent), if the suspensions S^aX and S^bY are homotopy equivalent for some a and b.

We obtain the following theorem which is [8, Th. A] when r=1.

THEOREM 1.1. Let p be a prime and r a positive integer such that $p^r \rightleftharpoons 2$. If the stunted lens space $L^n(p^r)/L^{m-1}(p^r)$ is S-equivalent to $L^{n+t}(p^r)/L^{m-1+t}(p^r)$ for n > m, then

$$t \equiv 0 \mod p^{\lfloor (n-m-1)/(p-1) \rfloor}.$$

The same is true for $L^{n}(p^{r})/L_{0}^{m}(p^{r}), L_{0}^{n}(p^{r})/L^{m}(p^{r})$ and $L_{0}^{n}(p^{r})/L_{0}^{m}(p^{r})$.

For the case $p^r = 2$, we have the following theorem which is proved