Some Properties of Hopf Algebras Attached to Group Varieties

Hiroshi Yanagihara

(Received September 17, 1971)

In the previous paper [8] we developed a theory of invariant semiderivations on group varieties defined over an algebraically closed field k of a positive characteristic p. Let G be a group variety defined over k and g(G)the set of all left invariant semi-derivations of G. Then the direct sum $\mathfrak{D}(G)$ $=k \oplus \mathfrak{g}(G)$ is a subalgebra of $\operatorname{End}_k(k(G))$, where k(G) is the field of the ratoinal functions on G over k. This structure has a close connection with the group multiplication of G. On the other hand $\mathfrak{D}(G)$ may be identified with the set of point distributions of the local ring \mathcal{O} of G at the neutral element e, and then $\mathfrak{D}(G)$ has a structure of a coalgebra induced dually from that of \mathcal{O} as an algebra over k. These structures give to $\mathfrak{D}(G)$ a Hopf algebra structre over k. Using this structure we obtained some results on purely inseparable isogenies of group varieties in [8].

In this paper we shall show that our theory of the Hopf algebras $\mathfrak{D}(G)$ has more applications not only to the theory of purely insparable isogenies of group varieties, but also to the general theory of algebraic groups over a field of a positive charabteristic p. In particular $\mathfrak{D}(G)$ may play a similar role to that of the Lie algebra of invariant derivations on a group variety in the case of characteristic zero.

In §l we give some definitions and results on Hopf algebras over a field which are necessary in the later sections. Let \mathcal{Q} be the category of commutative and cocommutative Hopf algebras over a field k which are a union of finite dimensional Hopf subalgebras. Then it is shown that \mathcal{Q} is an abelian category. In the next section we shall obtain a criterion, in the languages of Hopf algebras, for a morphism of a group variety to another to be separable. For this purpose we give a generalization of the theorem in the paper $\lceil 4 \rceil$ on the existence of convenient pair of local parameters at the neutral elements for a given purely inseparable isogeny of group varieties. As an application of this criterion we give a modification of Serre's results on the group Ext(A, B) in §3, where A and B are commutative group varieties. He treated in $\lceil 6 \rceil$ the case of purely inseparable isogenies of exponent 1 making use of the Galois theory for such isogenies. However we obtain the same result for any purely inseparable isogeny of a commutative group variety using our Hopf algebras. Of course this result may be obtained in a different way if we use the fact that the category of commutative algebraic group