On the Radon Transform of the Rapidly Decreasing Functions on Symmetric Spaces II

Masaaki Eguchi (Received May 28, 1971)

1. Introduction.

One of the problems which are proposed by S. Helgason for the Radon transform is to study the relations between the function spaces on a space X and on the dual space \hat{X} by means of the Radon transform $f \rightarrow \hat{f}$. In [1], we considered the transform of the rapidly decreasing functions in $\mathcal{O}(S)$ on a Riemannian globally symmetric space S. But to construct a \mathcal{O} -theory for the Radon transform in a sense, it seems more favorable to study the Radon transform on the Schwartz space $\mathcal{O}(S)$, which is generalized by Harish-Chandra in [3], than on $\mathcal{O}(S)$, since we know that the Schwartz space is invariant under the left translations by G [3].

In this paper we shall study the Radon transform for the functions in the Schwartz space $\mathcal{Q}(S)$ on a Riemannian globally symmetric space of the non-compact type. The main results are Theorems A, B, C and D.

2. Preliminaries.

As usual, R and C denote the fields of real and complex numbers respectively. If M and N are two topological spaces, φ a homeomorphism of M onto N and f a function on M, we put $f^{\varphi} = f \circ \varphi^{-1}$. If M is a C^{∞} -manifold, C^{∞} (M) (respectively, $C_c^{\infty}(M)$) denotes the space of differentiable functions (respectively, differentiable functions with compact support) on M. If G is a Lie group and K a closed subgroup of G, for $x \in G$, the left translation by x of the homogeneous space G/K of the left cosets onto itself will be denoted by $\tau(x)$.

D(G/K) denotes the algebra of differential operators on the homogeneous space G/K which are invariant under the left translations $\tau(x)$, $x \in G$. We write D(G) instead of D(G/e), where e is the identity element of G.

Let S be a Riemannian globally symmetric space of the noncompact type, and $G = I_0(S)$ denote the largest connected group of isometries of S in the compact open topology, then G is a semisimple Lie group and has no compact normal subgroup $\neq e$. Let any point o in S fix, K denote the isotropy subgroup of G at o, g_0 and f_0 denote the Lie algebras of G and K, respectively,