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1. Introduction.

One of the problems which are proposed by S. Helgason for the Radon
transform is to study the relations between the function spaces on a space X
and on the dual space X by means of the Radon transform /->/. In [1], we
considered the transform of the rapidly decreasing functions in d(5) on a
Riemannian globally symmetric space S. But to construct a d-theory for the
Radon transform in a sense, it seems more favorable to study the Radon
transform on the Schwartz space (§(£), which is generalized by Harish-
Chandra in pΓ], than on ό{S), since we know that the Schwartz space is in-
variant under the left translations by G [ΊΓ].

In this paper we shall study the Radon transform for the functions in
the Schwartz space &{S) on a Riemannian globally symmetric space of the
non-compact type. The main results are Theorems A, B, C and D.

2. Preliminaries.

As usual, R and C denote the fields of real and complex numbers res-
pectively. If M and N are two topological spaces, φ a homeomorphism of M
onto N and / a function on M9 we put fφ=f°φ~1. If M is a C°°-manifold, C°°
(M) (respectively, C~(M)) denotes the space of differentiate functions (res-
pectively, differentiate functions with compact support) on M. If G is a Lie
group and K a closed subgroup of G, for x e £, the left translation by x of
the homogeneous space G/K of the left cosets onto itself will be denoted by

rW
D(G/K) denotes the algebra of differential operators on the homogeneous

space G/K which are invariant under the left translations r(x), x e G. We
write D(G) instead of D(G/e), where e is the identity element of G.

Let 5 be a Riemannian globally symmetric space of the noncompact type,
and G = I0(S) denote the largest connected group of isometries of 5 in the
compact open topology, then G is a semisimple Lie group and has no compact
normal subgroup Φe. Let any point o in S fix, K denote the isotropy sub-
group of G at o, g0 and ϊ0 denote the Lie algebras of G and K, respectively,


