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1. In 1966, Besala and Fife [ 1] studied the asymptotic behavior of solu-
tions of the Cauchy problem for a parabolic differential operator
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with non-negative Cauchy data not identically equal to zero. More recently
Kuroda [4] also discussed an analogous problem under somewhat different

conditions on the coefficients of such a parabolic differential operator and
proved the following theorem:

Assume that the coefficients of (1) are defined for all (x, t) € R” % (0, o)
and satisfy for some 2 €(0, 17 the following hypotheses:
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for any real vector ¢=(¢,,..., &,) € R”,
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where k,(>0), K1, K;(=0), k3(=0), £4(=0) and K3(>0) are constants.
Let the following inequality hold:
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where we have set r0=<k3 + n45 2 )1’2. If a non-negative function u(x, t)
1

continuous in R”x [0, o) satisfies (i) Lu<<0 in R” x (0, =) in the usual sense,
and (ii) u(x, 0)=>0 and u(x, 0)=20 for x € R” and u(x, t)=>—p exp (w(|x|2+1)")
for some positive constants x« and v, then u(x, t) grows to infinity exponen-
tially as ¢ tends to infinity and this exponential growth of u(x, ¢) is uniform
in any compact subset of R”.
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