Corrections to "The Reduced Symmetric Product of a Complex Projective Space and the Embedding Problem"

Tsutomu Yasui
(Received February 25, 1972)

There is a mistake in $\S 5$ of my previous note [6], and the results (2) and (3) of theorem 5.5 on pages 28 and 39 are incorrect. This theorem should be replaced by

Theorem 5.5. Let $n \geq 4$.

(1) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n}$.
(2) There exist countable isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-1}$.
(3) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n-2}$ for $n \neq 2^{r}$.

This note contains some corrections of $[6, \S 5]$ and the proof of (2) and (3) of the above.

1. Some Corrections. In this note, denote simply by $S Z$ the quotient manifold $S Z_{n+1,2}$ of [6. (1.3)] and let λ be the real line bundle associated with the double covering $Z_{n+1,2} \longrightarrow S Z$. (In $[6, \S 5]$, we consider also λ as the real line bundle associated with the double covering $C P^{n} \times C P^{n}-\Delta \longrightarrow\left(C P^{n}\right)^{*}$.) Let \mathscr{B} be the S^{m-1}-bundle associated with $m \lambda$ and let $\mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)$ be the bundle of coefficients with fiber $\pi_{i}\left(S^{m-1}\right)$ associated with \mathscr{B}. Then the obstructions for the existence of a non-zero cross section of $m \lambda$ are the elements of $H^{i+1}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right.$) and the obstructions for two given non-zero cross sections being homotopic are the elements of $H^{i}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right.$). If m is even, then the bundle of coefficients $\mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)$ is trivial since $m \lambda$ is orientable, and so the above cohomology groups with local coefficients coincide with the ordinary cohomology groups.

Therefore the cohomology groups $H^{*}\left(S Z ; \pi_{i}\left(S^{m-1}\right)\right)$ for odd m in $[6, \S 5$, pp. 38-39] should be replaced by $H^{*}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right)$.
2. Proof of Theorem 5.5. (2). By [4, §37.5] and [6, Prop. 5.2 (2)], it is sufficient to show that $H^{4 n-2}\left(S Z ; \mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)\right)=Z$. Since $(4 n-1) \lambda$ is unorientable, the bundle of coefficients $\mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)$ with fiber $\pi_{4 n-2}\left(S^{4 n-2}\right)=$ Z is not trivial by [4, §38. 12]. Let \mathscr{B}^{\prime} be the tangent sphere bundle of $S Z$. Because $S Z$ is a ($4 n-2$)-dimensional unorientable manifold by [6, Th. 4.15], the bundle of coefficients $\mathscr{B}^{\prime}\left(\pi_{4 n-3}\left(S^{4 n-3}\right)\right.$) with fiber $\pi_{4 n-3}\left(S^{4 n-3}\right)=Z$ is not

