A Study of 2^t_L²-Valued Distributions on a Semi-Axis in connection with the Cauchy Problem for a Pseudo-Differential System

Mitsuyuki ITANO and Kiyoshi YOSHIDA (Received September 20, 1972)

In a previous paper [10] one of the present authors has investigated the fine Cauchy problem for a system of linear partial differential operators and obtained the following result: Let $\vec{P}(t, x, D_x)$ be an $N \times N$ matrix of linear partial differential operators with coefficients $\epsilon C^{\infty}(R_{n+1})$. The fine Cauchy problem consists in finding a solution $\vec{u} = (u_1, u_2, \dots, u_N), u_j \in \mathscr{D}'(R_{n+1}^+)$ to the equation

$$D_t \vec{u} + \vec{P}(t, x, D_x) \vec{u} = \vec{f}$$
 in R_{n+1}^+

with initial condition

 $\lim_{t \downarrow 0} \vec{u}(t, x) = \vec{\alpha},$

when $\vec{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_N)$, $\alpha_j \in \mathscr{D}'(R_n)$ and $\vec{f} = (f_1, f_2, ..., f_N)$, $f_j \in \mathscr{D}'(R_{n+1}^+)$ are arbitrarily given, where $\lim_{t \neq 0} \vec{u}$ denotes the distributional boundary value of \vec{u} . If there exists a solution \vec{u} for the problem, then \vec{f} must have the canonical extension \vec{f}_{\sim} over t=0 and $\vec{v} = \vec{u}_{\sim}$ satisfies the equation

$$D_t \vec{v} + \vec{P}(t, x, D_x)\vec{v} = \vec{f} - i\delta \otimes \vec{\alpha}.$$

Conversely, if $\vec{v} = (v_1, v_2, \dots, v_N)$, $v_j \in \mathscr{D}'_+(R_{n+1})$ is a solution of this equation, then the restriction $\vec{u} = \vec{v} | R_{n+1}^+$ is a solution for our original Cauchy problem and $\vec{u}_{\sim} = \vec{v}$. If we replace $\vec{P}(t, x, D_x)$ by $\vec{A}(t)$, an $N \times N$ matrix of pseudo-differential operators [cf. p. 384 for definition], we shall have a right reason to consider the spaces $\mathscr{D}'(R_t^+)((\mathscr{D}'_L)_x)$ and $\mathscr{D}'_t((\mathscr{D}'_L)_x)$ instead of $\mathscr{D}'(R_{n+1}^+)$ and $\mathscr{D}'(R_{n+1})$ respectively. As a result, it will be natural to introduce the boundary value and the canonical extension in a suitable sense.

The present paper is also designed to be the introductory part of our subsequent paper [12] which will appear in this journal.

In Section 1 we discuss the space $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ and the spaces related to it. These spaces are all reflexive, ultrabornological and Souslin. Section 2 is devoted to discussions concerning the \mathscr{D}'_{L^2} -boundary value and the \mathscr{D}'_{L^2} -canonical extension. Various alternatives of these notions will also be considered. In Section 3 we shall introduce the operator $\vec{A}(t)$ referred to above and in-