Groups of Self-equivalences of Certain Complexes

Shichirô Oka

(Received September 19, 1972)

Introduction

Throughout this note, all spaces, maps and homotopies are assumed to be based, and any map and its homotopy class are written by the same letter.

Let $\mathscr{E}(X)$ denote the group of self-equivalences of a topological space X. The member of $\mathscr{E}(X)$ is a homotopy class of homotopy equivalences of X into itself. The group operation of $\mathscr{E}(X)$ is given by the composition of maps. This group $\mathscr{E}(X)$ is a homotopy type invariant of X.

Several examples are known (see [5]-[10]). In particular, for a CWcomplex $K=S^n \cup e^{n+k+1}$, $k \ge -1$, having two cells, the group $\mathscr{E}(K)$ has been
studied in the case k=-1, $n \ge 2$ and the case k=0, $n \ge 1$. The former case
is treated in [9: Example 8], and the latter is due to P.Olum [7] for n=1 and
the recent work of A.J. Sieradski [10] for arbitrary $n \ge 1$.

The purpose of this note is to determine the group $\mathscr{E}(K)$ for a *CW*-complex $K = S^n \cup_{\alpha} e^{n+k+1}$, $k \ge 1$, under the condition that the attaching class α is a double suspension, $\alpha = E^2 \alpha''$, and both α and $E\alpha''$ have the same order. Our main result is stated as follows:

THEOREM 3.2. Let $K = S^n \cup_{\alpha} e^{n+k+1}$, $k \ge 1$, $n \ge 2$. Suppose that there exists an element $\alpha'' \in \pi_{n+k-2}(S^{n-2})$ such that $E^2 \alpha'' = \alpha$, and both $E\alpha''$ and α have the same order m. Let $i: S^n \to K$ and $p: K \to S^{n+k+1}$ be the inclusion and the projection, respectively, and set

$$G=i_*p^*\pi_{n+k+1}(S^n),$$

which is a subgroup of the group [K, K] with the track addition.

Define a two-sided action of the multiplicative group $Z_2 = \{-1, 1\}$ on G by

$$(-1)g = i_*p^*(-\iota_n)\gamma, \quad g(-1) = -g \quad for \quad g = i_*p^*\gamma \in G,$$

where $\iota_n \in \pi_n(S^n)$ is the class of the identity map of S^n .

Then, the group $\mathscr{E}(K)$ of self-equivalences of K is isomorphic to the multiplicative group whose entries are matrices

$$\begin{pmatrix} x & g \\ 0 & y \end{pmatrix}$$
, $x, y \in Z_2, g \in G$ for $m=1, 2$,
 $\begin{pmatrix} x & g \\ 0 & x \end{pmatrix}$, $x \in Z_2, g \in G$, for $m>2$,

where the matrix multiplication is given as usual.