Oscillation Theorems for Delay Equations of Arbitrary Order

Takaŝi KUSANO and Hiroshi ONOSE (Received September 14, 1972)

1. Introduction

We consider the n-th order delay equations

(1) $x^{(n)}(t) + p(t)f(x(t), x(\delta(t))) = 0,$

(2)
$$x^{(n)}(t) + p(t)g(x(\delta(t))) = 0,$$

where p(t) is continuous and eventually positive on $R_{+} = [0, \infty)$ and $\delta(t)$ is continuous on R_{+} with $\delta(t) \leq t$, $\lim_{t \to \infty} \delta(t) = \infty$. (These assumptions on p(t) and $\delta(t)$ will be assumed without further mention.) We restrict attention to solutions of (1) or (2) which exist on some positive half-line. A nontrivial solution x(t) is called oscillatory if there exists a sequence $\{t_k\}_{k=1}^{\infty}$ such that $\lim_{k \to \infty} t_k = \infty$ and $x(t_k) = 0$ for all k. Otherwise, a solution is called nonoscillatory. A nonoscillatory solution is said to be strongly monotone if it tends monotonically to zero as $t \to \infty$ together with its first n-1 derivatives.

In [2] we established an oscillation theorem for (2) under the assumption that the retarded argument $\delta(t)$ is continuously differentiable and nondecreasing on R_+ . The purpose here is to give oscillation criteria for (1) and (2) by avoiding this assumption and requiring that $\delta(t)$ has a continuously differentiable and nondecreasing minorant $\delta_*(t)$. The use of a differentiable minorant was suggested by Travis [4]. This will allow our theorems to be applied to delay equations of the form $x^{(n)}(t) + p(t)g(x(t-\tau(t))) = 0, 0 \leq \tau(t) \leq M$, where $\tau(t)$ is not assumed differentiable.

2. Main Theorems

We now state our major results.

THEOREM 1. With regard to equation (1) assume that:

(i) there exists a continuously differentiable and nondecreasing function on R_+ , $\delta_*(t)$, such that $\delta_*(t) \leq \delta(t)$ and $\lim \delta_*(t) = \infty$;

(ii) f(x, y) is continuous on $R \times R$, $R = (-\infty, \infty)$, is nondecreasing in y,