Нікозніма Матн. J. 3 (1973), 37–60

Energy of Functions on a Self-adjoint Harmonic Space II

Fumi-Yuki MAEDA (Received January 19, 1973)

Introduction

In the previous paper [13] under the same title, we introduced a notion of energy of functions on a self-adjoint harmonic space. By a self-adjoint harmonic space, we mean a Brelot's harmonic space possessing a symmetric Green function. We showed that a notion of energy which is given in terms of differentiation in the classical case can be defined on such an abstract harmonic space. In [13], however, we defined energy only for certain bounded functions and for harmonic functions. In the present paper, we shall extend the definition to more general functions, which correspond to BLD-functions (see [10] and [5]) or Dirichlet functions (see [9]) in the classical potential theory.

Here, let us review basic definitions and main results in [13].

The base space Ω is a connected, locally connected, noncompact, locally compact Hausdorff space with a countable base. We consider a structure of harmonic space $\mathfrak{H} = \{\mathscr{H}(\omega)\}_{\omega: \operatorname{open} \subset \Omega}$ on Ω satisfying Axioms 1, 2 and 3 of M. Brelot [4]. In addition to these axioms, we assume:

Axiom 4. The constant function 1 is superharmonic.

Axiom 5. There exists a positive potential on Ω .

Axiom 6. Two positive potentials with the same point (harmonic) support are proportional.

The pair (Ω, \mathfrak{H}) is called a *self-adjoint harmonic space* if there exists a function $G(x, y): \Omega \times \Omega \to (0, +\infty]$ such that G(x, y) = G(y, x) for all $x, y \in \Omega$ and, for each $y \in \Omega, x \to G(x, y)$ is a potential on Ω and is harmonic on $\Omega - \{y\}$. Such G(x, y) is uniquely determined up to a multiplicative constant and is called a *Green function* for (Ω, \mathfrak{H}) . In our theory, we assume that (Ω, \mathfrak{H}) is a self-adjoint harmonic space and fix a Green function G(x, y) throughout. For any domain ω in $\Omega, \mathfrak{H} = \{\mathscr{H}(\omega')\}_{\omega' \subset \omega}$ is also a structure of self-adjoint harmonic space on ω satisfying Axioms $1 \sim 6$ and there is a Green function $G^{\omega}(x, y)$ for $(\omega, \mathfrak{H})\omega$ having the same singularity as G(x, y) (see Proposition 1.2). For a non-negative measure (=Radon measure) μ on Ω (resp. on ω) $U^{\mu}(x) = \int_{\Omega} G(x, y)d\mu(y)$ (resp.