Energy of Functions on a Self-adjoint Harmonic Space II

Fumi-Yuki Maeda
(Received January 19, 1973)

Introduction

In the previous paper [13] under the same title, we introduced a notion of energy of functions on a self-adjoint harmonic space. By a self-adjoint harmonic space, we mean a Brelot's harmonic space possessing a symmetric Green function. We showed that a notion of energy which is given in terms of differentiation in the classical case can be defined on such an abstract harmonic space. In [13], however, we defined energy only for certain bounded functions and for harmonic functions. In the present paper, we shall extend the definition to more general functions, which correspond to BLD-functions (see [10] and [5]) or Dirichlet functions (see [9]) in the classical potential theory.

Here, let us review basic definitions and main results in [13].
The base space Ω is a connected, locally connected, noncompact, locally compact Hausdorff space with a countable base. We consider a structure of harmonic space $\mathfrak{H}=\{\mathscr{H}(\omega)\}_{\omega: \text { open } \subset \Omega}$ on Ω satisfying Axioms 1,2 and 3 of M . Brelot [4]. In addition to these axioms, we assume:

Axiom 4. The constant function 1 is superharmonic.
Axiom 5. There exists a positive potential on Ω.
Axiom 6. Two positive potentials with the same point (harmonic) support are proportional.

The pair (Ω, \mathfrak{H}) is called a self-adjoint harmonic space if there exists a function $G(x, y): \Omega \times \Omega \rightarrow(0,+\infty]$ such that $G(x, y)=G(y, x)$ for all $x, y \in \Omega$ and, for each $y \in \Omega, x \rightarrow G(x, y)$ is a potential on Ω and is harmonic on $\Omega-\{y\}$. Such $G(x, y)$ is uniquely determined up to a multiplicative constant and is called a Green function for (Ω, \mathfrak{y}). In our theory, we assume that (Ω, \mathfrak{H}) is a self-adjoint harmonic space and fix a Green function $G(x, y)$ throughout. For any domain ω in $\Omega, \mathfrak{H} \mid \omega=\left\{\mathscr{H}\left(\omega^{\prime}\right)\right\}_{\omega^{\prime} \epsilon_{\omega}}$ is also a structure of self-adjoint harmonic space on ω satisfying Axioms $1 \sim 6$ and there is a Green function $G^{\omega}(x, y)$ for $(\omega, \mathfrak{H} \mid \omega)$ having the same singularity as $G(x, y)$ (see Proposition 1.2). For a non-negative measure (= Radon measure) μ on Ω (resp. on ω) $U^{\mu}(x)=\int_{\Omega} G(x, y) d \mu(y)$ (resp.

