Characterizations of Radicals of Infinite Dimensional Lie Algebras

Dedicated to Professor Tôzirô Ogasawara on the occasion of his retirement

Shigeaki Tôgô (Received January 17, 1973)

Introduction

Recently investigations have been made on the Lie algebras of infinite dimension. As the Lie analogues of the infinite group theory, B. Hartley [1] has considered the notions of subideals and ascendant subalgebras and studied the locally nilpotent radicals which reduce to the nilpotent radical in finite-dimensional case. In [4, 5] we have introduced and studied the locally solvable radicals which reduce to the solvable radical in finite-dimensional case. If $\mathfrak X$ is a coalescent (resp. an ascendantly coalescent) class of Lie algebras, for an arbitrary Lie algebra L we there defined the radical $\operatorname{Rad}_{\mathfrak X-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak X-\operatorname{asc}}(L)$) as the subalgebra generated by all the $\mathfrak X$ subideals (resp. all the ascendant $\mathfrak X$ subalgebras) of L. In particular, if the basic field is of characteristic 0, $\operatorname{Rad}_{\mathfrak X\cap\mathfrak F-\operatorname{si}}(L)$ and $\operatorname{Rad}_{\mathfrak X\cap\mathfrak F-\operatorname{asc}}(L)$ are respectively the Baer radical $\beta(L)$ and the Gruenberg radical $\gamma(L)$ which are locally nilpotent [1], and $\operatorname{Rad}_{\mathfrak X\cap\mathfrak F-\operatorname{si}}(L)$ and $\operatorname{Rad}_{\mathfrak X\cap\mathfrak F-\operatorname{asc}}(L)$ are locally solvable radicals [4, 5], where $\mathfrak X$, $\mathfrak X$ and $\mathfrak X$ denote respectively the classes of nilpotent, solvable and finite-dimensional Lie algebras.

The purpose of this paper is to investigate the radicals of Lie algebras, especially to present certain characterizations of $\operatorname{Rad}_{x-si}(L)$ and $\operatorname{Rad}_{x-asc}(L)$ and to study two new radicals.

For a class $\mathfrak X$ of Lie algebras, we denoted by $L\mathfrak X$ the collection of Lie algebras L such that any finite subset of L lies inside an $\mathfrak X$ subalgebra of L [4]. In Section 2, in connection with $L\mathfrak X$ we define $M\mathfrak X$ (resp. $M\mathfrak X$) as the class of Lie algebras L such that any finite subset of L lies inside an $\mathfrak X$ subideal (resp. an ascendant $\mathfrak X$ subalgebra) of L and study their properties. In Section 3 we show that if $\mathfrak X$ is coalescent (resp. ascendantly coalescent), any Lie algebra L has a unique maximal $M\mathfrak X$ (resp. $M\mathfrak X$) ideal (Theorem 3.2) and $\mathrm{Rad}_{\mathfrak X-\mathrm{si}}(L)$ (resp. $\mathrm{Rad}_{\mathfrak X-\mathrm{asc}}(L)$) is the subalgebra generated by all the $M\mathfrak X$ subideals (resp. all the ascendant $M\mathfrak X$ subalgebras) of L and belongs to $M\mathfrak X$ (resp. $M\mathfrak X$) (Theorem 3.5). Hence if furthermore $\mathrm{Rad}_{\mathfrak X-\mathrm{si}}(L)$ (resp. $\mathrm{Rad}_{\mathfrak X-\mathrm{asc}}(L)$) is an ideal of L then it is the unique