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Introduction

Recently investigations have been made on the Lie algebras of infinite di-
mension. As the Lie analogues of the infinite group theory, B. Hartley [1] has
considered the notions of subideals and ascendant subalgebras and studied the
locally nilpotent radicals which reduce to the nilpotent radical in finite-dimen-
sional case. In [4, 5] we have introduced and studied the locally solvable radicals
which reduce to the solvable radical in finite-dimensional case. If 3£ is a coales-
cent (resp. an ascendantly coalescent) class of Lie algebras, for an arbitrary Lie
algebra L we there defined the radical Rad£_si(L) (resp. Rads_aac(L)) as the
subalgebra generated by all the £ subideals (resp. all the ascendant 3£ subalgebras)
of L. In particular, if the basic field is of characteristic 0, Radsβng_Si(L) and

Radsβng-ascCk) are respectively the Baer radical β(L) and the Gruenberg radical
y(L) which are locally nilpotent [1], and Rad@nδ_si(L) and Rad@nδ_asc(L) are
locally solvable radicals [4, 5], where 91, © and g denote respectively the classes
of nilpotent, solvable and finite-dimensional Lie algebras.

The purpose of this paper is to investigate the radicals of Lie algebras, es-
pecially to present certain characterizations of Radx_si(L) and Radx_asc(L) and
to study two new radicals.

For a class ϊ of Lie algebras, we denoted by LΪ the collection of Lie al-
gebras L such that any finite subset of L lies inside an 3£ subalgebra of L [4]. In
Section 2, in connection with LΪ we define M£ (resp. M3E) as the class of Lie
algebras L such that any finite subset of L lies inside an 3E subideal (resp. an
ascendant X subalgebra) of L and study their properties. In Section 3 we show
that if X is coalescent (resp. ascendantly coalescent), any Lie algebra L has a
unique maximal M£ (resp. MΪ) ideal (Theorem 3.2) and Rad^^L) (resp.
Rads_asc(L)) is the subalgebra generated by all the M£ subideals (resp. all the as-
cendant M£ subalgebras) of L and belongs to MΪ (resp. M£) (Theorem 3.5). Hence
if furthermore Rad^_sί(L) (resp. Rad^_asc(L)) is an ideal of L then it is the unique


