On the Irreducibility of Induced Representations of SU (2, 1)

Minoru Waкiмото (Received May 21, 1973)

§1. Introduction

This note is concerned with the irreducibility of representations of SU(2, 1)induced from one-dimensional representations of its minimal parabolic subgroup. Let $B=MA_+N$ be the minimal parabolic subgroup of G associated with an Iwasawa decomposition KA_+N of the group G=SU(2, 1). Let $g_0=\mathfrak{su}(2, 1)$ be the Lie algebra of G, and \mathfrak{a}_+ (resp. \mathfrak{n}_0) the subalgebra of g_0 corresponding to A_+ (resp. N), and we define a linear form ρ on \mathfrak{a}_+ by

$$\rho(H) = 2^{-1} \operatorname{Trace} \left(a d_{\mathfrak{n} \mathfrak{o}}(H) \right)$$

for every $H \in \mathfrak{a}_+$. Then a unitary character σ of M and a complex number λ define a representation $\mu_{\sigma\lambda}$ of B by

$$\mu_{\sigma\lambda}(m(\exp H)n) = \sigma(m)\exp(\lambda\rho(H))$$

for $m \in M$, $H \in \mathfrak{a}_+$ and $n \in N$. Let $\tilde{X}^{\sigma\lambda}$ be the space of all C-valued C^{∞} -differentiable functions f on G such that

$$f(xb) = \mu_{\sigma,\lambda+1}(b^{-1})f(x)$$

for every $x \in G$ and $b \in B$. The group G acts on $\tilde{X}^{\sigma\lambda}$ by left-translations, and there exists a canonical G-invariant non-singular pairing between $\tilde{X}^{\sigma\lambda}$ and $\tilde{X}^{\sigma,-\bar{\lambda}}$. The universal enveloping algebra \mathfrak{U} of the complexification g of g_0 acts on $\tilde{X}^{\sigma\lambda}$ as infinitesimal representations of left-translations, and stabilizes the subspace $X^{\sigma\lambda}$ of $\tilde{X}^{\sigma\lambda}$ consisting of all K-finite elements. The K-module $X^{\sigma\lambda}$ has the irreducible decomposition

$$X^{\sigma\lambda} = \bigoplus_{\tau \in E_{K}^{\sigma}} X_{\tau}^{\sigma\lambda}$$

where E_K^{σ} is the set of all equivalence classes of irreducible unitary representations of K which contain σ when restricted to the subgroup M, and $X_{\tau}^{\sigma\lambda}$ denotes the K-submodule of $X^{\sigma\lambda}$ equivalent to τ . We shall make investigations into the irreducibility of the U-module $X^{\sigma\lambda}$ by using its K-module structure and a canonical pairing (,) of $X^{\sigma\lambda}$ and $X^{\sigma,-\overline{\lambda}}$ The set E_K^{σ} contains a one-dimensional