Remarks on Algebraic Hopf Subalgebras

Hiroshi Yanagihara (Received May 14, 1973)

The aim of this note is to give a generalization of a theorem in the paper [2] which is concerned with algebraic Hopf subalgebras of the Hopf algebra attached to a group variety. In other words we show that a similar result to the theorem is obtained for not necessarily reduced group schemes over an algebraically closed field of a positive characteristic p, though the objects in [2] were group varieties exclusively. Moreover we give a corrected proof of Corollary to Lemma 12 in [2], because the previous proof is applicable only in the case where G is an affine algebraic group.

The terminalogies are the same as in the papers [1] and [2].

1. In the following let k be an algebraically closed field of a positive characteristic p and G a group scheme of finite type over k. Let $\mathscr{O} = \mathscr{O}_{e,G}$ be the local ring of G at the neutral point e, that is, the stalk of the structure sheal of G at e. If \mathscr{O}' is the local ring $\mathscr{O}_{e\times e}$, $_{G\times G}$ of the product scheme $G\times G$ over k at the point $e\times e$, it is the quotient ring $(\mathscr{O} \otimes_k \mathscr{O})_S$ of $\mathscr{O} \otimes_k \mathscr{O}$ with respect to the multiplicatively closed set S which is the complement of the maximal ideal $m\otimes \mathscr{O} + \mathscr{O} \otimes m$ of $\mathscr{O} \otimes_k \mathscr{O}$, where m is the maximal ideal of \mathscr{O} . Let R be the m-adic completion of \mathscr{O} . Then R has a natural structure of a formal group over k in the sense of §5 in [2], whose comultiplication $A: R \to R \otimes_k R$ is given by the multiplication m of G. The antipode G of G is determined by the morphism $G \otimes_k G \otimes_k G$ itself. Then $G \otimes_k G \otimes_k G$ is also true in this case. The proof is exactly the same.

First we give a corrected proof of the corollary to Lemma 12 in [2] in a slightly general form.

LEMMA 1. Let G, O and O' be as above. Let a be an ideal of O such that $\triangle(a) \subset (a \otimes O + O \otimes a)O'$ and c(a) = a. Let G' be the closed subset of G defined by the ideal a. Then G' is the underlying space of an irreducible group k-subscheme of G.

PROOF. We may assume that a is equal to its radical, because the radical of a also satisfies the same hypothesis as a. From our assumption, it follows that there exists an open subset V of $G' \times G'$ containing $e \times e$ such that the image of V by the morphism m of $G \times G$ onto G is contained in G'. Since each irreducible