Oscillation and Asymptotic Behavior of Solutions of Retarded Differential Equations of Arbitrary Order

Hiroshi Onose (Received April 28, 1973)

1. Introduction

We are here concerned with the oscillatory behavior of solutions of higherorder retarded differential equations of the form

(A)
$$y^{(n)}(x) + y(g(x))F([y(g(x))]^2, x) = 0, \quad n \ge 2,$$

where the following conditions are always assumed to hold:

- (a) g(x) is continuous for x > 0, $g(x) \le x$ and $\lim g(x) = \infty$;
- (b) $yF(y^2, x)$ is continuous for x > 0 and $|y| < \infty$, and F(t, x) is nonnegative for $t \ge 0$ and x > 0.

Equation (A) is classified according to the nonlinearity of F(t, x) with respect to t, namely (A) is called *superlinear* if F satisfies

(1.1)
$$F(t_1, x) \leq F(t_2, x), \quad t_1 < t_2, \quad x \in (0, \infty),$$

and sublinear if F satisfies

(1.2)
$$F(t_1, x) \ge F(t_2, x), \quad t_1 < t_2, \quad x \in (0, \infty).$$

Moreover, (A) is called strongly superlinear if there is an $\varepsilon > 0$ such that

(1.3)
$$t_1^{-\varepsilon}F(t_1, x) \leq t_2^{-\varepsilon}F(t_2, x), \quad t_1 < t_2, \quad x \in (0, \infty),$$

and strongly sublinear if there is an $\varepsilon > 0$ such that

(1.4)
$$t_1^{\epsilon}F(t_1, x) \ge t_2^{\epsilon}F(t_2, x), \quad t_1 < t_2, \quad x \in (0, \infty).$$

(See e.g. Nehari [29], Coffman and Wong [8].) The prototype of equation (A) is

(B)
$$y^{(n)}(x) + p(x)|y(g(x))|^{\alpha} \operatorname{sgn} y(g(x)) = 0,$$

where $p(x) \ge 0$ for x > 0 and $\alpha > 0$, which may be considered as a generalization of the Emden-Fowler equation. Equation (B) is superlinear, strongly superlinear, sublinear or strongly sublinear according as $\alpha \ge 1$, $\alpha > 1$, $\alpha \le 1$ or $\alpha < 1$.