Character Groups of Toral Lie Algebras

Takefumi Shudo

(Received March 30, 1973)

Introduction

It is well known that the duality and categorical equivalence hold between algebraic tori and character groups (e.g., [1], ch. III). In this paper we develop an analogy for Lie algebras. General properties of toral Lie algebras are stated in [3] and [5]. Their characters are introduced by Seligman in [3] and applied to algebraic Lie algebras in [3] and [4].

Let T be a toral Lie algebra and let X(T) be the character group of T. Then it is proved that the (contravariant) functor $X: T \mapsto X(T)$ is actually an equivalence of categories (Theorem 1) and in this relation every subalgebra (resp. quotient algebra) of T corresponds to a quotient group (resp. subgroup) of X(T) (Proposition 3).

As an application we generalize some of the results in [3]. Namely, if T satisfies a certain condition which generalizes that the base field is finite then the properties (a) and (b) of Theorem 7 in [3] are equivalent (Theorem 2) and the direct sum decomposition of T as in Theorem 8 in [3] holds (Theorem 3).

The main tools of the paper are the rationality property for vector spaces in terms of Galois groups which is described in [1] and the direct sum decomposition, stated in [2], of a vector space on which a nilpotent Lie algebra acts.

The author wishes to express his thanks to Professor S. Togo for helping to complete this paper by giving several important observations.

1. Preliminaries and notations

Let k be any field of characteristic p>0. Let L be a Lie p-algebra over k of finite dimension with a p-map $x \mapsto x^p$. An element $x \in L$ is said to be separable if x is represented as a linear combination of x^p , x^{p^2} ,.... If T is an abelian Lie p-algebra over k and every element of T is separable then T is called a torus or a toral Lie algebra over k. Some criteria for tori are found in [5]. Cleary every (p-)subalgebra of a torus is itself a torus. In this paper homomorphisms of Lie p-algebras always mean Lie algebra homomorphisms which are compatible with p-maps.

Let \overline{k} be the algebraic closure of k and k_s be the separable closure of k in \overline{k} . Then \overline{k} and k_s are regarded as Lie *p*-algebras over k with natural *p*-th power.