Нікозніма Матн. J. 3 (1973), 251–265

On the K-Ring of
$$S^{4n+3}/H_m$$

Kensô Fujii

(Received March 28, 1973)

§ 1. Introduction

The purpose of this note is to study the K-ring $K(N^n(m))$ of complex vector bundles over the (4n+3)-dimensional quotient manifold

$$N^{n}(m) = S^{4n+3}/H_{m}, \quad (m \ge 2).$$

Here, H_m is the generalized quaternion group generated by the two elements x and y with the two relations

$$x^{2^{m-1}} = y^2$$
 and $xyx = y$,

that is, H_m is the subgroup of the unit sphere S^3 in the quaternion field **H** generated by the two elements

$$x = \exp(\pi i/2^{m-1})$$
 and $y = j$,

and the action of H_m on the unit sphere S^{4n+3} in the quaternion (n+1)-space H^{n+1} is given by the diagonal action.

Recently, the problem of immersing or embedding this manifold $N^n(m)$ in euclidean spaces is studied in [8].

Let α' and β' be the complex line bundles over $N^n(m)$ whose first Chern classes are the generators of $H^2(N^n(m); Z) = Z_2 \oplus Z_2$, and $\delta' = \pi^1 \lambda$ be the complex plane bundle over $N^n(m)$ induced from the canonical complex plane bundle λ over the quaternion projective space HP^n by the natural projection

 $\pi: N^n(m) \longrightarrow HP^n.$

Then we have the following

THEOREM 1.1. The reduced K-ring $\tilde{K}(N^n(m))$ $(m \ge 2)$ is generated multiplicatively by the three elements

$$\alpha = \alpha' - 1$$
, $\beta = \beta' - 1$ and $\delta = \delta' - 2$.

This theorem shows that the natural ring homomorphism

$$\xi\colon \widetilde{R}(H_m) \longrightarrow \widetilde{K}(N^n(m))$$