Existence of Solutions of Heavily Nonlinear Volterra Integral Equations

Athanassios G. KARTSATOS (Received March 9, 1973)

1. Introduction

The objective of this paper is to show the existence of solutions (in a BANACH function space) of VOLTERRA integral equations of the form

(1.1)
$$x(t) = f(t) + \int_0^t K(t, s, x(s)) ds,$$

where x, f, K are *n*-dimensional vectors. To achieve this, we assume that "admissibility" conditions hold for a linear equation associated with (1.1). By "admissibility" we mean here the concept introduced by MILLER [12].

Our results are particularly useful in the case of equations of the form

(1.2)
$$x(t) = f(t) + \int_0^t K(t, s, x(s))x(s)ds,$$

(where K is now an $n \times n$ matrix), provided that we know un upper bound for the norm of the linear operator $I - R_u$, where I is the identity operator, and R_u is the resolvent kernel associated with the linear equation

(1.2)_u
$$x(t) = f(t) + \int_0^t K(t, s, u(s))x(s)ds.$$

The function u(t) above lies in a suitable closed ball of a Banach function space. We also show that the same method can be applied to nonlinear perturbations of linear systems.

2. Preliminaries

In what follows, $J = [0, \infty)$, $E = \{(t, s) \in J^2; t \ge s\}$, and $R = (-\infty, \infty)$. For a vector $x \in R^n$ we put $||x|| = \sum_i |x_i|$, and for a real $n \times n$ matrix $A = [a_{ij}]$, $||A|| = \sup_k \sum_i |a_{ik}|$. We denote by C_c the space of all continuous functions $f: J \rightarrow R^n$, associated with the topology of uniform convergence on compact subintervals of J. The letter B will always denote a BANACH space contained in C_c , stronger than C_c , and with norm $||\cdot||_B$. C will stand for the space of all