Nonlinear Operators of Monotone Type in Reflexive Banach Spaces and Nonlinear Perturbations

Nobuyuki KENMOCHI (Received September 18, 1973)

Introduction

In this paper we are concerned with nonlinear operators of monotone type from a reflexive Banach space X into the dual space X^* . Such operators have been considered to make a general treatment of boundary value problems for nonlinear elliptic partial differential equations and initial-boundary value problems for nonlinear parabolic partial differential equations. Studies of nonlinear operators of monotone type have been made by many authors (e.g., [1]–[3], [5]–[7], [9]–[12], [15]–[18], [20], [22], [25]).

In [2] Brezis introduced two classes of nonlinear singlevalued operators, called of type M and pseudo-monotone respectively, from X into X^* and then established existence theorems for nonlinear functional equations of the forms

(a)
$$Ax = f$$
 for given $f \in X^*$

and

(b)
$$Ax + Tx = f$$
 for given $f \in X^*$,

where A is an operator of type M or a pseudo-monotone operator from X into X^* and T is a nonlinear monotone operator from X into X^* . Recently, the concept of pseudo-monotone operators was generalized by Browder and Hess [10] to the multivalued case. Many results in [2] on the solvability of (a) and (b) were extended to the multivalued case where the equations have the forms:

(a)'
$$Ax \ni f$$
 for given $f \in X^*$

and

(b)'
$$Ax + Tx \ni f$$
 for given $f \in X^*$.

In this paper we shall first give a natural generalization of the notion of operators of type M to the multivalued case, and investigate basic properties of such operators. Next, we shall solve nonlinear equations of types (a) and (b) for multivalued operators of type M and multivalued pseudo-monotone operators under somewhat different assumptions from those in [2], [10], [11] and [22].