The Fourier Transform of the Schwartz Space on a Semisimple Lie Group

Masaaki EGUCHI

(Received September 17, 1973)

Table of Contents

§	1.	Introduction
§	2.	Notation and preliminaries135
§	3.	The character of $\pi_{\sigma,\lambda}$
§	4.	The Plancherel measure and the Plancherel formula149
§	5.	Statement of the main theorem154
§	6.	Eisenstein integrals157
§	7.	Proof of the injectivity of the map \mathcal{F} 161
§	8.	A sufficient condition for the map \mathcal{F} to be surjective
§	9.	Basic estimates for derivatives175
§ 1	0.	Spherical functions
§ 1	1.	The functions
§ 1	2.	Some estimates for Φ and Ψ
§ 1	3.	The functions Θ and θ
§ 1	4.	Some estimates for θ
§ 1	5.	Application to the continuous series
§ 1	6.	Completion of the proof of Theorem 8.1
§ 1	7.	The Fourier transform of tempered distributions
		Bibliography

1. Introduction

Let G be a semisimple Lie group and $L^2(G)$ denote the space of square-integrable functions on G with respect to the Haar measure. The Fourier transform \mathscr{F} can be regarded as an isometry of $L^2(G)$ onto the Hilbert space $L^2(\hat{G})$ which is defined by irreducible unitary representations of G.

In his paper [6(m)], Harish-Chandra introduces the Schwartz space $\mathscr{C}(G)$ consisting of functions on G. It is analogous to the Schwartz space $\mathscr{L}(\mathbb{R}^n)$ of rapidly decreasing functions on a eulidean space \mathbb{R}^n and is contained densely in $L^2(G)$. It is of much interest to ask about the image of $\mathscr{C}(G)$ in $L^2(\hat{G})$ under \mathscr{F} . This is a Paley-Wiener type question for $\mathscr{C}(G)$. There are some results for this problem. It is solved by J.G. Arthur[1] in the real rank one case. Moreover, the problems for the Schwartz space on Riemannian globally symmetric spaces and for a certain subspace are studied by Eguchi-Okamoto[4] and Harish-