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1. Introduction

Let G be a semisimple Lie group and L?(G) denote the space of square-integra-
ble functions on G with respect to the Haar measure. The Fourier transform
& can be regarded as an isometry of L2(G) onto the Hilbert space L2(G) which
is defined by irreducible unitary representations of G.

In his paper [6(m)], Harish-Chandra introduces the Schwartz space %(G)
consisting of functions on G. It is analogous to the Schwartz space & (R")
of rapidly decreasing functions on a eulidean space R" and is contained densely
in L2(G). It is of much interest to ask about the image of #(G) in L2(G) under
& . This is a Paley-Wiener type question for #(G). There are some results for
this problem. It is solved by J.G. Arthur[1] in the real rank one case. More-
over, the problems for the Schwartz space on Riemannian globally symmetric
spaces and for a certain subspace are studied by Eguchi-Okamoto[4] and Harish-



