An Inequality for Certain Functional of Multidimensional Probability Distributions

Hiroshi MURATA and Hiroshi TANAKA (Received September 10, 1973)

§1. Introduction and the results

Denote by \mathscr{P} the class of all probability distributions f in \mathbb{R}^d such that $\int |x|^2 f(dx) < \infty$ and $\int (x_i - \mu_i)^2 f(dx) > 0$ $(1 \le i \le d)$, where $\mu = (\mu_1, \dots, \mu_d)$ is the mean vector of f. For each $f \in \mathscr{P}$, denote by g_f the Gaussian distribution with the same mean vector and variance matrix as those of f. We introduce a functional e on \mathscr{P} by

$$e[f] = \inf E\{|X - Y|^2\}, \qquad f \in \mathcal{P},$$

where the infimum is taken over all pairs of \mathbb{R}^d -valued random variables X and Y defined on a probability space (Ω, \mathcal{F}, P) and distributed according to f and g_f respectively. We also write e[X] for $e[f_X]$, where f_X is the probability distribution of a random variable X.

In the one dimensional case, the functional e was introduced and its basic properties were studied in [4] with an application to Kac's one-dimensional model of a Maxwellian gas. The purpose of this paper is to extend some results in [4] to the multi-dimensional case, that is, we will prove the following theorems.

THEOREM 1. Let X and Y be random variables with probability distributions $f \in \mathcal{P}$ and g_f respectively, and assume that $e[f] = E\{|X - Y|^2\}$. Then, X is equal to some Borel function of Y almost surely.

THEOREM 2. Let X_1 and X_2 be independent random variables with probability distributions belonging to \mathcal{P} . Then,

$$e[X_1 + X_2] < e[X_1] + e[X_2]$$

unless both X_1 and X_2 are Gaussian. In other words, the functional equation

$$\mathbf{e}[f_1 * f_2] = \mathbf{e}[f_1] + \mathbf{e}[f_2], \qquad f_1, f_2 \in \mathcal{P}$$

gives a characterization of Gaussian distributions.