On Characterizations of Dedekind Domains

Toshiko Koyama^{*}), Mieo NISHI^{**}) and Hiroshi YanaGihara^{**}) (Received August 29, 1973)

Introduction

Let R be a commutative ring with unit element and M be an R-module. We consider the following two properties on M.

 $(P)_R$: If $M = N_1 + N_2$ where N_1 and N_2 are R-submodules of M, then $N_1 = M$ or $N_2 = M$.

 $(Q)_R$: if N_1 and N_2 are *R*-submodules of *M*, then $N_1 \supset N_2$ or $N_2 \supset N_1$. Clearly, the property $(Q)_R$ implies the property $(P)_R$ and the property $(P)_R$ implies that *M* is indecomposable.

In the case that R is a Dedekind domain, we shall exhibit all R-modules which satisfy $(P)_R$ and at once see that they satisfy also $(Q)_R$.

If we restrict ourselves to abelian groups, those groups which satisfy $(P)_z$ are subgroups of $Z(p^{\infty})$ for some prime p. In fact, this result came first and then it has been generalized to modules over a Dedekind domain R.

Next, suppose R to be a noetherian integral domain such that if $(P)_R$ is satisfied by an R-module M then so is $(Q)_R$. We shall show R must be a Dedekind domain if R_p is analytically irreducible for any maximal ideal p. This gives us a new characterization of Dedekind domains.

Finally, in § 2, we shall discuss a relation between the notion of purity and that of essentiality and get another characterization of Dedekind domains.

§1. In the following we denote by $E_R(M)$ the injective envelope of an *R*-module *M*. First we determine all *R*-modules which satisfy the property $(P)_R$, or equivalently the property $(Q)_R$, when *R* is a Dedekind domain.

THEOREM 1. Let R be a Dedekind domain, K be its quotient field and M be an R-module. Then the following statements are equivalent:

- (1) M has $(P)_R$.
- (2) M has $(Q)_R$.

(3) If R is not a discrete valuation ring, then M is isomorphic to a submodule of $E_R(R|\mathfrak{p})$ for some maximal ideal \mathfrak{p} in R. If R is a discrete valuation ring, M is isomorphic to R, K or a submodule of $E_R(R|\mathfrak{p})$ for some maximal ideal \mathfrak{p} .