On the KO-Ring of S^{4n+3}/H_m

Kensô Fujii (Recieved January 19, 1974)

§1. Introduction

The purpose of this note is to study the KO-ring $KO(N^n(m))$ of real vector bundles over the (4n+3)-dimensional quotient manifold

$$N^{n}(m) = S^{4n+3}/H_{m} \qquad (m \ge 2),$$

whose K-ring $K(N^n(m))$ of complex vector bundles is studied in the previous note [3]. Here, H_m is the generalized quaternion group generated by two elements x and y with the two relations

$$x^{2^{m-1}} = y^2 \quad \text{and} \quad xyx = y,$$

that is, H_m is the subgroup of the unit sphere S^3 in the quaternion field \boldsymbol{H} generated by the two elements

$$x = \exp(\pi i/2^{m-1})$$
 and $y = j$,

and the action of H_m on the unit sphere S^{4n+3} in the quaternion (n+1)-space H^{n+1} is given by the diagonal action.

Consider the real line bundles

$$\alpha'_0, \beta'_0 \in KO(N^n(m)),$$

whose first Stiefel-Whitney classes generate the cohomology group $H^1(N^n(m); \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, and the real restriction

$$\delta'_0 = r\pi^1 \lambda \in KO(N^n(m))$$

of the induced bundle $\pi^{i}\lambda$, where λ is the canonical complex plane bundle over the quaternion projective space $HP^{n} = S^{4n+3}/S^{3}$ and $\pi: N^{n}(m) \to HP^{n}$ is the natural projection. Also, it is proved by B. J. Sanderson [7] that the complexification $c: KO(HP^{n}) \to K(HP^{n})$ is monomorphic and $(\lambda-2)^{2} \in cKO(HP^{n})$, and so we can consider the element

$$x_0 = \pi^1 c^{-1}((\lambda - 2)^2) \in KO(N^n(m)).$$

Then we have the following