Note on r-Operations in KO-Theory

Teiichi Kobayashi

(Received January 17, 1974)

§1. Introduction

Let $p_{i}(\alpha)$ be the i-th (integral) Pontrjagin class of a real stable vector bundle α over a finite $C W$-complex X, and let γ^{i} be the Grothendieck γ-operation in $K O$ theory. Let k be a positive integer. Consider the two conditions: $p_{k}(\alpha)=0$ and $\gamma^{2 k}(\alpha)=0$.
M. F. Atiyah has shown the following result in [3, §6] using the Chern character.

Theorem 1.1. (M. F. Atiyah) Suppose that $H^{*}(X ; Z)$ is free. Then, for any real stable vector bundle α over X and for any positive integer k,

$$
\gamma^{2 k}(\alpha)=0 \Rightarrow p_{k}(\alpha)=0 .
$$

For integers $n>0$ and $q>1$, we denote by $L^{n}(q)\left(=S^{2 n+1} / Z_{q}\right)$ the $(2 n+1)$ dimensional standard lens space $\bmod q$ and by $R P^{n}\left(=S^{n} / Z_{2}\right)$ the real projective n-space. The purpose of this note is to prove the following

Theorem 1.2. (i) Assume that q is an odd integer >1. Let α be any real stable vector bundle over $L^{n}(q)$ and k be any positive integer. Then

$$
\gamma^{2 k}(\alpha)=0 \Rightarrow p_{k}(\alpha)=0,
$$

while the converse does not hold in general.
(ii) The same is true for $R P^{n}$.

There are examples of vector bundles for which the equality $\gamma^{2 k}(\alpha)=0$ does not imply the equality $p_{k}(\alpha)=0$. Let $C P^{n}\left(=S^{2 n+1} / S^{1}\right)$ be the complex projective n-space, and $D(m, n)$ be the Dold manifold of dimension $m+2 n$ obtained from $S^{m} \times C P^{n}$ by identifying (x, z) with ($-x, \bar{z}$), where $(x, z) \in S^{m} \times C P^{n}$.

Theorem 1.3. Assume that $n=2^{r}$ and $m=2^{s} \quad(r>s>1)$. Let $\tau_{0}=\tau-$ $(m+2 n)$ be the stable class of the tangent bundle τ of $D(m, n)$, and put $k=$ $n / 2+m / 4$. Then $\gamma^{2 i}\left(-\tau_{0}\right)=0$ for any $i \geqq k$, but $p_{k}\left(-\tau_{0}\right) \neq 0$.

Let η be the canonical complex line bundle over $L^{n}(q)$. In $\S 2$, we calculate the Pontrjagin class of a real stable vector bundle $\alpha=r \sum_{i=1}^{q-1} a_{i}\left(\eta^{i}-1\right)$, where

