## A Note on Graded Gorenstein Modules

## Michinori SAKAGUCHI

(Recieved December 19, 1973)

Recently the following conjecture was proposed by M. Nagata in [6]. Let  $A = \sum_{n \ge 0} A_n$  be a commutative Noetherian graded ring. If  $A_m$  is Cohen-Macaulay for every maximal ideal m with  $m \supset \sum_{n \ge 1} A_n$ , then A is Cohen-Macaulay. This conjecture was solved affirmatively by J. Matijevic and P. Roberts in [5]. The aim of this paper is to prove the following theorem which generalizes the assertion in [5].

Theorem. Let  $A = \sum_{n \in \mathbb{Z}} A_n$  be a commutative Noetherian graded ring and  $M = \sum_{n \in \mathbb{Z}} M_n$  be a non-zero, finite graded A-module. If  $M_{\mathfrak{p}}$  is a Gorenstein  $A_{\mathfrak{p}}$ -module (resp., a Cohen-Macaulay  $A_{\mathfrak{p}}$ -module) for every homogeneous prime ideal  $\mathfrak{p} \in \operatorname{Supp}(M)$ , then M is Gorenstein (resp. Cohen-Macaulay).

1. We denote by  $\mu^i(\mathfrak{p}, M)$  the dimension of the  $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ -vector space  $\operatorname{Ext}_{A\mathfrak{p}}^i(A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}})$  (cf. [1]) and by  $ht_M\mathfrak{p}$  the Krull dimension of the local ring  $A_{\mathfrak{p}}/Ann(M)A_{\mathfrak{p}}$  (cf. [7]), where Ann(M) is the annihilator of M and  $\mathfrak{p} \in \operatorname{Supp}(M)$ . The following lemma, due to Bass and Sharp, plays an important role in our discussion.

LEMMA 1 (Bass [1, (3.7)] and Sharp [7, (3.11)]). Let M be a finite A-module.

- (i) M is a Cohen-Macaulay module if and only if, for each  $\mathfrak{p} \in \operatorname{Supp}(M)$ ,  $\mu^{i}(\mathfrak{p}, M) = 0$  whenever  $i < ht_{M}\mathfrak{p}$ .
- (ii) The following conditions are equivalent.
  - (1) M is a Gorenstein module.
  - (2) For each  $\mathfrak{p} \in \text{Supp}(M)$ ,  $\mu^{i}(\mathfrak{p}, M) = 0$  if and only if  $i \neq ht_{M}\mathfrak{p}$ .

For an ideal  $\alpha$  of the graded ring A we let  $\alpha^*$  denote the homogeneous ideal generated by homogeneous elements of  $\alpha$ .

LEMMA 2. Let M be a graded A-module and p a prime ideal of A. Then  $p \in \text{Supp}(M)$  if and only if  $p^* \in \text{Supp}(M)$ .

PROOF. Suppose that  $M_p = 0$ ; then, for each homogeneous element m in M, there is a homogeneous component of s with sm = 0, say  $s_u$ , which is not contained in p. Clearly  $s_um = 0$  and this implies  $M_{p*} = 0$ . The converse is obvious. q.e.d.