Principal Oriented Bordism Algebra $\Omega_*(\mathbb{Z}_{2^k})$

Yutaka Katsube

(Received October 4, 1973)

Introduction

The principal oriented bordism module $\Omega_*(G)$ for a finite group G is defined to be the module of equivariant bordism classes of closed oriented principal G-manifolds, and is a module over the oriented bordism ring Ω_* of R. Thom (cf. [1]).

This module $\Omega_*(G)$ and the unoriented one $\mathfrak{N}_*(G)$ are studied by several authors. If G is a finite cyclic group, the Ω_* -module structure of $\Omega_*(G)$ is determined by P. E. Conner and E. E. Floyd [1, Ch. VII] for $G = Z_{p^k}$ (p: odd prime), and by K. Shibata [3, §§ 1-4] for $G = Z_2$. Also it is proved by N. Hassani [2] that there is an isomorphism $\Omega_*(Z_{qr}) \cong \Omega_*(Z_q) \otimes_{\Omega_*} \Omega_*(Z_r)$ of Ω_* -modules if q and r are relatively prime.

The main purpose of this note is to study the Ω_* -module structure of $\Omega_*(Z_{2^k})$ for k>1. Also, we study the Pontrjagin products in $\Omega_*(Z_{2^k})$ and $\mathfrak{N}_*(Z_{2^k})$ for k>1.

In §1, we are concerned with the unoriented bordism module

$$\mathfrak{N}_{*}(Z_{2^{k}}) \cong \mathfrak{N}_{*} \otimes H_{*}(Z_{2^{k}}; Z_{2}) \qquad (\text{cf. } [1, (19.3)]).$$

It is easy to see that this is a free \Re_* -module with basis $\{[T, S^{2n+1}], i[a, S^{2n}] | n \ge 0\}$ (Proposition 1.7), where (T, S^{2n+1}) is the Z_{2^k} -manifold with the diagonal action T of $\exp(\pi \sqrt{-1/2^{k-1}})$ and $i(a, S^{2n})$ is the extension of the Z_2 -manifold (a, S^{2n}) with the antipodal action a. Also we study in Theorem 1.22 the product formulae in $\Re_*(Z_{2^k})$ using the results for $\Re_*(Z_2)$ of F. Uchida [6].

In §2, we are concerned with

$$\tilde{\Omega}_n(Z_{2^k}) \cong \sum_{p+q=n} \tilde{H}_p(Z_{2^k}; \Omega_q) \qquad \text{(cf. [1, Th. 14.2])}.$$

Using the homomorphism $r: \Omega_*(Z_{2^k}) \to \mathfrak{N}_*(Z_{2^k})$ obtained by ignoring orientations, and the results for $\Omega_*(Z_2)$ in [3], we prove in Theorem 2.18 that the Ω_* module $\tilde{\Omega}_*(Z_{2^k})$ (k>1) is a quotient module of the free Ω_* -module

$$\Omega_*\{\{[T, S^{2n+1}], iE^{2n+1}W(\omega)|n \ge 0, \omega \in \pi\}\},\$$

where $E^{2n+1}W(\omega) \in \tilde{\Omega}_*(\mathbb{Z}_2)$. Finally, we study in Theorem 2.22 the Pontrjagin product in $\tilde{\Omega}_*(\mathbb{Z}_{2^k})$.