Note on Equivariant Maps from Spheres to Stiefel Manifolds

Toshio Yoshida
(Received May 8, 1974)

§ 1. Introduction

Let $X=(T, X)$ be a Hausdorff space with a fixed point free involution T. By [2, Def. (3.1)], the index of (T, X) is the largest integer n for which there is an equivariant map of the n-sphere S^{n} into X. The co-index of (T, X) is the least integer n for which there is an equivariant map of X into S^{n}. Here the fixed point free involution of S^{n} is the antipodal involution A. We abbreviate index and co-index by ind (T, X) and co-ind (T, X), respectively. It may happen for a particular X that there is no upper bound on the dimension of the sphere which can be equivariantly mapped into X; then we write ind $(T, X)=\infty$. Also if X cannot be equivariantly mapped into S^{n} no matter how large n, write co-ind (T, X) $=\infty$.

As there is no equivariant map of S^{n+1} into S^{n}, we have

$$
\operatorname{ind}\left(A, S^{n}\right)=\operatorname{co-ind}\left(A, S^{n}\right)=n .
$$

Let $V_{n, m}$ be the Stiefel manifold of orthonormal m-frames in real n-space R^{n}. There is a fixed point free involution T_{2} on $V_{n, m}$ defined by sending an m-frame $\left(v_{1}, \ldots, v_{m}\right)$ to $\left(-v_{1}, \ldots,-v_{m}\right)$.

Let ξ_{k} be the canonical line bundle over k-dimensional real projective space $R P^{k}$, and $n \xi_{k}$ the Whitney sum of n-copies of ξ_{k}. Let Span α denote the maximum number of the linearly independent cross-sections of a vector bundle α.

Proposition 1. ind $\left(T_{2}, V_{n, m}\right) \geqq k$ if and only if $\operatorname{Span} n \xi_{k} \geqq m$.
For example, Span $n \breve{\xi}_{k}$ is studied in [6] and [9].
$\operatorname{Corollary} 2 . \operatorname{ind}\left(T_{2}, V_{n, 2}\right)=\operatorname{co-ind}\left(T_{2}, V_{n, 2}\right)=n-1$, for even n.
Remark. By [2, p. 426],

$$
n-2=\operatorname{ind}\left(T_{2}, V_{n, 2}\right)<\operatorname{co-ind}\left(T_{2}, V_{n, 2}\right)=n-1, \quad \text { for odd } n .
$$

Let $Z_{q}=\left\{e^{i \theta} \mid \theta=2 \pi h / q, h=0, \ldots, q-1\right\}$ be the cyclic group of order q. Then an action of Z_{q} on the complex n-space C^{n} is defined by $e^{i \theta}\left(z_{1}, \ldots, z_{n}\right)=\left(e^{i \theta} z_{1}, \ldots\right.$, $e^{i \theta} z_{n}$).

