Note on Equivariant Maps from Spheres to Stiefel Manifolds

Toshio Yoshida

(Received May 8, 1974)

§1. Introduction

Let X = (T, X) be a Hausdorff space with a fixed point free involution T. By [2, Def. (3.1)], the *index* of (T, X) is the largest integer n for which there is an equivariant map of the *n*-sphere S^n into X. The *co-index* of (T, X) is the least integer n for which there is an equivariant map of X into S^n . Here the fixed point free involution of S^n is the antipodal involution A. We abbreviate *index* and *co-index* by ind(T, X) and co-ind(T, X), respectively. It may happen for a particular X that there is no upper bound on the dimension of the sphere which can be equivariantly mapped into X; then we write $ind(T, X) = \infty$. Also if Xcannot be equivariantly mapped into S^n no matter how large n, write co-ind $(T, X) = \infty$.

As there is no equivariant map of S^{n+1} into S^n , we have

$$\operatorname{ind}(A, S^n) = \operatorname{co-ind}(A, S^n) = n$$
.

Let $V_{n,m}$ be the Stiefel manifold of orthonormal *m*-frames in real *n*-space \mathbb{R}^n . There is a fixed point free involution T_2 on $V_{n,m}$ defined by sending an *m*-frame (v_1, \ldots, v_m) to $(-v_1, \ldots, -v_m)$.

Let ξ_k be the canonical line bundle over k-dimensional real projective space RP^k , and $n\xi_k$ the Whitney sum of *n*-copies of ξ_k . Let Span α denote the maximum number of the linearly independent cross-sections of a vector bundle α .

PROPOSITION 1. ind $(T_2, V_{n,m}) \ge k$ if and only if $\text{Span } n\xi_k \ge m$.

For example, Span $n\xi_k$ is studied in [6] and [9].

COROLLARY 2. ind $(T_2, V_{n,2}) = \operatorname{co-ind}(T_2, V_{n,2}) = n-1$, for even n.

Remark. Ву [2, р. 426],

 $n-2 = ind(T_2, V_{n,2}) < co-ind(T_2, V_{n,2}) = n-1$, for odd n.

Let $Z_q = \{e^{i\theta} | \theta = 2\pi h/q, h = 0, ..., q-1\}$ be the cyclic group of order q. Then an action of Z_q on the complex *n*-space C^n is defined by $e^{i\theta}(z_1,...,z_n) = (e^{i\theta}z_1,...,e^{i\theta}z_n)$.