A Comparison Theorem on Generalized Capacity

Mamoru Kanda

(Received May 2, 1974)

1. Introduction.

For any real function $\phi(r)$ which is continuous and monotone decreasing for r>0 with $\lim_{r\to 0+} \phi(r) = +\infty$, Frostman [2] defined capacity C^{ϕ} with respect to ϕ . Let ϕ_0 be a fixed function of the same type and let us consider the following two properties.

- i) If $C^{\phi_0}(K) = 0$ for some compact set $K \subset \mathbb{R}^d$, then $C^{\phi}(K) = 0$ and the converse implication is also valid.
- ii) $M_1\phi_0(r) \ge \phi(r) \ge M_2\phi_0(r)$ for each $0 < r < \delta_0$, where M_i , i = 1, 2 are positive constants.

It is evident by the definition of capacity that ii) implies i). If ϕ_0 is such that $r^d\phi_0(r)$ is monotone increasing with $\lim_{r\to 0^+} r^d\phi_0(r) = 0$ and $r^{-d} \int_0^r \phi_0(s) s^{d-1} ds \le M_3\phi_0(r)$ for $0 < r < \delta$, we see that i) implies $\phi(r) \le M_4\phi_0(r)$ by Theorem 4 and Remark in S. J. Taylor [6]. Our object in the present note is to show that i) implies $M_5\phi_0(r) \le \phi(r)$ for $0 < r < \delta$ in case $r^p\phi_0(r)$ is monotone increasing for some $0 , which is a stronger assumption on <math>\phi_0$ than S. J. Taylor's. Our result is as follows.

THEOREM. Let $\phi_0(r)$ and $\phi(r)$ be such that they are monotone decreasing, right continuous with $\lim_{r \to 0+} \phi_0(r) = \lim_{r \to 0+} \phi(r) = +\infty$ and $r^p \phi_0(r)$ is monotone increasing for some d > p > 0. Then i) implies ii).

2. Definitions and known results.

We set

 $\Phi = \{\phi; \phi(r) \text{ is positive, monotone decreasing and right continuous with} \\ \lim_{r \to 0+} \phi(r) = +\infty\},$

and

$$\phi_p = \{\phi \in \Phi; r^p \phi(r) \text{ is monotone increasing for } 0 < r < \delta\}$$

For a compact set K in Euclidean d-space R^d we set

^{*)} This research was supported by the Matsunaga Science Foundation.