Asymptotic Behavior of Solutions for Large |x| of Weakly Coupled Parabolic Systems with Unbounded Coefficients*

Lu-San CHEN, Jer-San LIN and Cheh-Chih YEH (Received January 30, 1974)

§ 1. Introduction.

Let E^n be the *n*-dimensional Euclidean space whose points x is represented by its coordinates $(x_1, ..., x_n)$. The distance of a point x of E^n to the origin is defined by $|x| = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$. Every point in $D \equiv E^n \times (0, T]$ is denoted by (x, t), $x \in E^n$, $t \in (0, T]$ $(T < +\infty)$.

We say that a function w(x, t) belongs to class $E_{\lambda\mu}(D, M, k)$ or shortly $E_{\lambda\mu}(\lambda, \mu > 0)$ are constants in D if there exist positive numbers M, k such that

$$|w(x, t)| \le M \exp\{k\lceil \log(|x|^2+1)+1\rceil^{\lambda}(|x|^2+1)^{\mu}\}.$$

We say that a function w(x, t) belongs to class $E_{\lambda}(D, M, k)$ or shortly $E_{\lambda}(\lambda \ge 1)$ is a constant in D if there exist positive numbers M, k such that

$$|w(x, t)| \leq M \exp\left\{k\lceil\log(|x|^2+1)+1\rceil^{\lambda}\right\}.$$

Consider a weakly coupled parabolic system of the form

(*)
$$F^{p}[u^{p}] \equiv \sum_{i,j=1}^{n} a_{ij}^{p}(x,t) \frac{\partial^{2} u^{p}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}^{p}(x,t) \frac{\partial u^{p}}{\partial x_{i}} + \sum_{q=1}^{N} c^{pq}(x,t) u^{q} - \frac{\partial u^{p}}{\partial t}$$
$$p = 1,..., N$$

with variable coefficients $a_{ij}^p(=a_{ji}^p)$, b_i^p , c^{pq} defined in \overline{D} . In this paper, we deal with the decay of solutions of

(1)
$$F^p[u^p] = 0, \quad p = 1, ..., N,$$

and the growth of solutions of

(2)
$$F^p[u^p] \leq 0, \quad p = 1,..., N,$$

for large |x|.

^{*)} This research was supported by the National Science Council.