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The problem of oscillation and nonoscillation of solutions of elliptic partial
differential equations has been the subject of numerous investigations. For
nonoscillation results we refer to Headley [2], Headley and Swanson [3], Kreith
[4], Kuks [5], Piepenbrink [6], Skorobogat'ko [7], Swanson [8] and Yoshida
[9]. All of these papers deal with second order elliptic equations or systems,
and the author knows of no nonoscillation criteria which are applicable to equa-
tions of higher order.

Our purpose here is to develop nonoscillation criteria for the fourth order
elliptic equation with real coefficients

(1) Lu = Σ Dί/αi/x)αJtί(x)Dfcίw) + 2i?(x) ± akl{x)Dklu
i,j,k,l=l J k,l=l

+ . Σ D£aij(x)Djύ)+2Σ b£x)Dtu + c(x)u = 0

defined in an unbounded domain R of Euclidean n-space En. As usual, points
in En will be denoted by x=(xί,..., xM), differentiation with respect to xf by Di9

i = l,..., n, and successive differentiation with respect to x{ and Xj by D^ , i,j =
1,..., n. The following assumptions will be made throughout:

(a) The coefficients α yeC 2(K), βeC(R\ a^eC^R), ^ e C 1 ^ ) and ce

C(R).
(b) The matrix (α^ ) is symmetric and positive definite in R.
(c) The matrix (αfj ) is symmetric and negative semidefinite in R.

These assumptions will be placed without further mention on the coefficients of
elliptic operators of the same form as L which will be considered in the sequel.

The domain I>(L; G) of L relative to any subdomain G of R is defined as the
set C\G) Π C2(G). The notation

Rr = R Π {xeEn: \x\ > r}, 0 < r < oo,

will be used throughout.

DEFINITION 1. A bounded subdomain G of R is called a nodal domain of
(1) if there exists a nontrivial solution weI>(L;G) of (1) such that w=Dίw=0


