Hyperpolynomial Approximation of Solutions of Hereditary Systems

A. G. Petsoulas

(Received March 1, 1974)

Introduction 1.

Consider an operator L on $C[0,\tau]$, where $C[0,\tau] = \{\phi | \phi : [0,\tau] \rightarrow R^n$, continuous} with norm $\|\cdot\|$. Suppose that x is a solution of the equation L(x) = h, subject to the initial condition $x(0) = \alpha$. Then a problem in approximation theory is whether there are hyperpolynomials $S_n^* \in \Pi_n^*$ (Π_n^* is the set of all hyperpolynomials S_n^* of degree less than or equal to n, which satisfy the condition $S_n^*(0) = \alpha$, [5]) such that $||L(x) - L(S_n^*)|| = \inf_{\substack{S \in \Pi_n^*}} ||L(x) - L(S)||, n = 1, 2, ...$ and

lim $S_n^* = x$, uniformly on $[0, \tau]$.

The above problem has been studied in the following cases:

- i) $L(x) \equiv x' + B(t, x), \|\cdot\| = \|\cdot\|_p (L_p \text{-norm}), 1 \le p \le \infty.$ ([1], [3], [4].) ii) $L(x) \equiv x' + B(t, x) + \int_0^t F(t, s, x(s)) ds, \|\cdot\| = \|\cdot\|_p, 1 ([5].)$

The purpose of this paper is to study the same problem when L is an operator, which gives a hereditary system [2] and $\|\cdot\| = \|\cdot\|_p$, $1 \le p \le \infty$. The results here generalize those of [1], [3], [4], [5] not only for the case of the L_p -norm, 1 < $p \leq \infty$ but also for the L_1 -norm.

2. Preliminaries

Let I be an interval of R, $A \subseteq R$ be compact with max A = 0, $\alpha: I \times A \rightarrow R$ be a continuous function, nondecreasing with respect to the second variable and $\alpha(t, 0) = t, t \in I$. If $x: \alpha(I, A) \to R^n$ is continuous and $C(A) = \{f \mid f: A \to R^n, \text{ con-}$ tinuous}, we define an operator $Q_t x: I \rightarrow C(A)$ by the relation

$$(Q_t x)(\theta) = x(\alpha(t, \theta)), \quad t \in I, \quad \theta \in A.$$

An hereditary differential system is a relation of the form

$$(x - g(t, Q_t x))' = f(t, Q_t x)$$

where $f, g: I \times C(A) \rightarrow R^n$ are continuous.

Suppose $U \subseteq C(A)$ is open. We say that a continuous function $g: U \to \mathbb{R}^n$