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Introduction

In the previous paper [2], the author defined a notion of gradient measures
for functions on a self-adjoint harmonic space. In case the harmonic space

is given by solutions of a second order elliptic partial differential equation of
the form
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on a Euclidean domain, the mutual gradient measure 6, ,, of functions f and
g is given by
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Thus, in this case, the equality
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holds. The main purpose of this paper is to show that the equality (*) remains
valid for general self-adjoint harmonic spaces. Once this equality is established,
we can consider Royden’s algebra (cf. [3, Chap. III]) on a self-adjoint harmonic
space. We shall also see that if the harmonic structure is considered on a Eucli-
dean domain and satisfies a certain additional condition (see Theorem 5), then
the gradient measure is expressed as
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with a positive-definite system of signed measures (v;;); and the harmonic func-
tions are ‘‘solutions” of the second order elliptic partial differential equation
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whose coefficients v;;, m are (signed) measures.



