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§1. Introduction

Let G, , be the Grassmann manifold of all m-planes through the origin of
the Euclidean n-space R". A. Neifahs [3] proved that n is a power of 2 if G, ,
is parallelizable.

In this note, we prove the following

THEOREM 1.1. G, ,, is parallelizable, i.e., the tangent bundle of G,,, is
trivial, if and only if

n=24or8; m=1orn—1.

To prove this theorem, we use the following theorem.

For a real vector bundle ¢, we denote by Span ¢ the maximum number of
linearly independent cross-sections of ¢&. Especially, we denote Span M=
SpantM, where tM is the tangent bundle of a C*-manifold M.

THEOREM 1.2. Let &, be the canonical line bundle over the real projective
k-space RP*, and n&, the Whitney sum of n-copies of it.
Then, SpanG, 2k implies Span nmé,_,,=m?+k.
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§2. Proof of Theorem 1.2

Let y,,, be the canonical m-plane bundle over G, ,, i.e., the total space of
Yn.m e the subspace of G, ,, x R" consisting of all pairs (x, v) where x€ G, , and v
is a vector in x. Then, by [2, Problem 5-B],

2.1 TG = Hom (Y ms Vii,m) »

where 7y, denotes the orthogonal complement of y, , in the trivial bundle G, , %
R"—>G, .

Consider the Stiefel manifold V, ,, of all orthonormal m-frames in R”, which
has the involution by sending each (vy,..., v,,) to (—vy,..., —v,). By [5, Prop. 1],
we see the following fact.



